• Title/Summary/Keyword: Earthquake Loss

Search Result 184, Processing Time 0.108 seconds

Robustness Estimation for Power and Water Supply Network : in the Context of Failure Propagation (피해파급에 대한 고찰을 통한 전력 및 상수도 네트워크의 강건성 예측)

  • Lee, Seulbi;Park, Moonseo;Lee, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.3
    • /
    • pp.33-42
    • /
    • 2018
  • In the aftermath of an earthquake, seismic-damaged infrastructure systems loss estimation is the first step for the disaster response. However, lifeline systems' ability to supply service can be volatile by external factors such as disturbances of nearby facilities, and not by own physical issue. Thus, this research develops the bayesian model for probabilistic inference on common-cause and cascading failure of seismic-damaged lifeline systems. In addition, the authors present network robustness estimation metrics in the context of failure propagation. In order to quantify the functional loss and observe the effect of the mitigation plan, power and water supply system in Daegu-Gyeongbuk in South Korea is selected as case network. The simulation results show that reduction of cascading failure probability allows withstanding the external disruptions from a perspective of the robustness improvement. This research enhances the comprehensive understanding of how a single failure propagates to whole lifeline system performance and affected region after an earthquake.

Intensity measure-based probabilistic seismic evaluation and vulnerability assessment of ageing bridges

  • Yazdani, Mahdi;Jahangiri, Vahid
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.379-393
    • /
    • 2020
  • The purpose of this study is to first evaluate the seismic behavior of ageing arch bridges by using the Intensity Measure - based demand and DCFD format, which is referred to as the fragility-hazard format. Then, an investigation is performed for their seismic vulnerability. Analytical models are created for bridges concerning different features and these models are subjected to Incremental Dynamic Analysis (IDA) analysis using a set of 22 earthquake records. The hazard curve and results of IDA analysis are employed to evaluate the return period of exceeding the limit states in the IM-based probabilistic performance-based context. Subsequently, the fragility-hazard format is used to assess factored demand, factored capacity, and the ratio of the factored demand to the factored capacity of the models with respect to different performance objectives. Finally, the vulnerability curves are obtained for the investigated bridges in terms of the loss ratio. The results revealed that decreasing the span length of the unreinforced arch bridges leads to the increase in the return period of exceeding various limit states and factored capacity and decrease in the displacement demand, the probability of failure, the factored demand, as well as the factored demand to factored capacity ratios, loss ratio, and seismic vulnerability. Finally, it is derived that the probability of the need for rehabilitation increases by an increase in the span length of the models.

Seismic Performance Evaluation of Reinforced Concrete Buildings Strengthened by Embedded Steel Frame (내부 매입형 철골조로 보강된 철근콘크리트 건물의 내진 성능평가)

  • Kim, Seonwoong;Lee, Kyungkoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.

Seismic demand estimation of RC frame buildings based on simplified and nonlinear dynamic analyses

  • Borzi, B.;Vona, M.;Masi, A.;Pinho, R.;Pola, D.
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.157-179
    • /
    • 2013
  • Vulnerability studies on the existing building stock require that a large number of buildings is analyzed to obtain statistically significant evaluations of the seismic performance. Therefore, analytical evaluation methods need to be based on simplified methodologies of analysis which can afford the treatment of a large building population with a reasonable computational effort. Simplified Pushover-Based Earthquake Loss Assessment approach (SP-BELA), where a simplified methodology to identify the structural capacity of the building through the definition of a pushover curve is adopted, was developed on these bases. Main objective of the research work presented in this paper is to validate the simplified methodology implemented in SP-BELA against the results of more sophisticated nonlinear dynamic analyses (NLDAs). The comparison is performed for RC buildings designed only to vertical loads, representative of the "as built" in Italy and in Mediterranean countries with a building stock very similar to the Italian one. In NLDAs the non linear and degrading behaviour, typical of the structures under consideration when subjected to high seismic loads, is evaluated using models able to capture, with adequate accuracy, the non linear behaviour of RC structural elements taking into account stiffness degradation, strength deterioration, and pinching effect. Results show when simplified analyses are in good agreement with NLDAs. As a consequence, unsatisfactory results from simplified analysis are pointed out to address their current applicability limits.

Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures

  • Golzar, Farzin G.;Rodgers, Geoffrey W.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.701-709
    • /
    • 2017
  • Seismic dissipation devices can play a crucial role in mitigating earthquake damages, loss of life and post-event repair and downtime costs. This research investigates the use of ring springs with high-force-to-volume (HF2V) dissipaters to create damage-free, recentring connections and structures. HF2V devices are passive rate-dependent extrusion-based devices with high energy absorption characteristics. Ring springs are passive energy dissipation devices with high self-centring capability to reduce the residual displacements. Dynamic behaviour of a system with nonlinear structural stiffness and supplemental hybrid damping via HF2V devices and ring spring dampers is used to investigate the design space and potential. HF2V devices are modelled with design forces equal to 5% and 10% of seismic weight and ring springs are modelled with loading stiffness values of 20% and 40% of initial structural stiffness and respective unloading stiffness of 7% and 14% of structural stiffness (equivalent to 35% of their loading stiffness). Using a suite of 20 design level earthquake ground motions, nonlinear response spectra for 8 different configurations are generated. Results show up to 50% reduction in peak displacements and greater than 80% reduction in residual displacements of augmented structure compared to the baseline structure. These gains come at a cost of a significant rise in the base shear values up to 200% mainly as a result of the force contributed by the supplemental devices.

A Study on the Probabilistic Safety Assessment and Sensitivity Analysis of Success Criteria of Large LOCA for APR+ (APR+ 확률론적 안전성평가 및 대형냉각재상실사고 성공기준과 파단크기 민감도 분석)

  • Moon, Horim;Kim, Han Gon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.129-134
    • /
    • 2016
  • Standard design of APR+(advanced power reactor plus) was certified at 2014 by Korea regulatory body. Based on the experience gained from OPR1000 and APR1400, the APR1400 was being developed as a 1,500MWe class reactor using Korean technologies for design code, reactor coolant pump, and man-machine interface system. APR+ has been basically designed to have the seismic design basis of safe shutdown earthquake (SSE) 0.3g, a 4-train safety concept based on N+2 design philosophy, and a passive auxiliary feedwater system (PAFS). Also, safety issues on the Fukushima-type accidents have been extensively reviewed and applied to enhance APR+ safety. APR+ provides higher reliability and safety against tsunami and earthquake. The purpose of this paper is to implement probabilistic safety assessment considering these design features and to analyze sensitivity of core damage frequency for large loss of coolant accident of APR+.

Evaluation of Degradation and Safety of Small Agricultural Reservoir (소규모 농업용 저수지의 노후도 및 안전도 평가 -고삼 저수지에 대한 사례 연구-)

  • 장병옥;박영곤;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Ths study was peformed to evaluate the degree of degradation and safety of a small agricultural reservoir, Kosam Reservoir, in Kyungki Province. Evaluation was done by the program developed by the authors. Results of the study are as follows: 1) Although many burrows were found in downstream side of embankment and cracks were found in wall joining spillway, it appeared that degree of degradation of embankment was in good conditions. 2) Compressive strengths of concrete of crest, side channel, chute floor of spillway were in poor condition. But it appeared that overall degree of degradation of structures was in medium condition based on the criteria of the evaluation system 3) From the analysis of slope stability, safety factor of downstream slope was over 3.3 for the worst condition, such as flood and high water level and that of upstream slope was also over 3.6 for rapid drawdown. In case of earthquake, safety factors were over 2.5 for all conditions. Therefore embankment slopes of Kosam Reservoir were very stable for normal and earthquake condition. 4) As upon assumed failure of embankment of Kosam Reservoir, degree of damage was estimated to be very serious because of many loss of life and properties in the downstream area. 5) Overall grade of safety of Kosam Reservoir was in good condition. Therefore safety was considered to be "No problems" at the present time but further degradation may be proceeded partly and continuously as time goes by.e goes by.

  • PDF

Seismic performance and design of bridge piers with rocking isolation

  • Chen, Xingchong;Xia, Xiushen;Zhang, Xiyin;Gao, Jianqiang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.447-454
    • /
    • 2020
  • Seismic isolation technology has a wide application to protect bridges from earthquake damage, a new designed bridge pier with seismic isolation are provided for railways in seismic regions of China. The pier with rocking isolation is a self-centering system under small and moderate earthquakes, and the unbonded prestressed tendons are used to prevent overturning under strong earthquakes. A numerical model based on pseudo-static testing results is presented to evaluate the seismic performance of isolation bridge piers, and is validated by the shaking table test. It is found that the rocking response and the loss of prestressing for the bridge pier increase with the increase of earthquake intensity. Besides, the intensity and spectral characteristics of input ground motion have great influence on displacement of the top and bottom of the bridge pier, while have less influence on the bending moment of the pier bottom. Experimental and numerical results show that the rocking-isolated piers presented in this study have good seismic performance, and it provides an alternative way for the railway bridge in the regions with high occurrence of earthquakes. Therefore, we provide the detailed procedures for seismic design of the rocking-isolated bridge pier, and a case study of the seismic isolation design with rocking piers is carried out to popularize the seismic isolation methods.

A risk-based framework for design of concrete structures against earthquake

  • Hassani, Mohammadhassan;Behnam, Behrouz;Maknoon, Reza
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.167-179
    • /
    • 2020
  • Optimal design of structures against earthquake loads is often limited to reduce initial construction costs, while the cost induced to structures during their useful life may be several times greater than the initial costs. Therefore, it is necessary to consider the indirect costs due to earthquakes in the design process. In this research, an integrated methodology for calculating life cycle cost (LCC) of moment-resisting concrete frames is presented. Increasing seismic safety of structures and reducing human casualties can play an important role in determining the optimal design. Costs incurred for structures are added to the costs of construction, including the costs of reconstruction, financial losses due to the time spent on reconstruction, interruption in building functionality, the value of people's life or disability, and content loss are a major part of the future costs. In this research, fifty years of useful life of structures from the beginning of the construction is considered as the life cycle. These costs should be considered as factors of calculating indirect costs of a structure. The results of this work represent the life cycle cost of a 4 story, 7 story, and 10 story moment-resisting concrete frame by details. This methodology is developed based on the economic conditions of Iran in 2016 and for the case of Tehran city.

Numerical investigation of film boiling heat transfer on the horizontal surface in an oscillating system with low frequencies

  • An, Young Seock;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.918-924
    • /
    • 2020
  • Film boiling is of great importance in nuclear safety as it directly influences the integrity of nuclear fuel in case of accidents involving loss of coolant. Recently, nuclear power plant safety under earthquake conditions has received much attention. However, to the best of our knowledge, there are no existing studies reporting film boiling in an oscillating system. Most previous studies for film boiling were performed on stationary systems. In this study, numerical simulations were performed for saturated film boiling of water on a horizontal surface under low frequencies to investigate the effect of system oscillation on film boiling heat transfer. A coupled level-set and volume-of-fluid method was used to track the interface between the vapor and liquid phases. With a fixed oscillation amplitude, overall, heat transfer decreases with oscillation frequency. However, there is a frequency region in which heat transfer remains nearly constant. This lock-on phenomenon occurs when the oscillation frequency is near the natural bubble release frequency. With a fixed oscillation frequency, heat transfer decreases with oscillation amplitude. With a fixed maximum amplitude of the additional gravity, heat transfer is affected little by the combination of oscillation amplitude and frequency.