• Title/Summary/Keyword: Earthquake Characteristics

Search Result 1,219, Processing Time 0.023 seconds

Experimental Study on the Dynamic Characteristics of Porcelain Surge Arrestor Considering the Variation of Cable's Tension and Arrestor's Stiffness (케이블 장력 및 피뢰기의 강성 변화를 고려한 애자형 피뢰기의 동특성 시험 연구)

  • Jang, Jung Bum;Hwang, Kyeong Min;Yun, Kwan Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.253-259
    • /
    • 2014
  • Porcelain surge arrestor is very vulnerable to earthquake but there is very few information on its dynamic characteristics which are necessary to the seismic design. Therefore, the dynamic characteristics of the porcelain surge arrestor are evaluated considering the variation of its cable tension and stiffness by shaking table test. The test results show that the first natural frequencies are 5.3 Hz and 5.2 Hz in the horizontal x- and y-axis directions, respectively, and higher than 30 Hz in the vertical z-axis direction, respectively. The installation of cable on the surge arrestor reduces the horizontal natural frequencies due to the constraint effect of the cable but cable tension has no effect on the natural frequency. Also, the natural frequency is proportional to the stiffness of the surge arrestor. This test result will be used for the seismic design and seismic capacity assessment of domestic substations and contribute to the stability of the electric power supply under earthquake event.

Modal analysis and ambient vibration measurements on Mila-Algeria cable stayed bridge

  • Kibboua, Abderrahmane;Farsi, Mohamed Naboussi;Chatelain, Jean-Luc;Guillier, Bertrand;Bechtoula, Hakim;Mehani, Youcef
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.171-186
    • /
    • 2008
  • The seismic response analysis of an existing bridge needs a mathematical model that can be calibrated with measured dynamic characteristics. These characteristics are the periods and the associated mode shapes of vibration and the modal damping coefficients. This paper deals with the measurements and the interpretation of the results of ambient vibration tests done on a newly erected cable stayed bridge across the Oued Dib River at Mila city in Algeria. The signal analysis of ambient vibration records will permit to determine the dynamic characteristics of the bridge. On the other hand, a 3-D model of the bridge is developed in order to assess the frequencies and the associated modes of vibration. This information will be necessary in the planning of the test on the site (locations of the sensors, frequencies to be measured and the associated mode shapes of vibration). The frequencies predicted by the finite element model are compared with those measured during full-scale ambient vibration measurements of the bridge. In the same way, the modal damping coefficients obtained by the random decrement method are compared to those of similar bridges.

Analysis of Amplication Factor of Response Spectrum using Strong Ground Motions Compatible to the Domestic Seismotectonic Characteristics (유사 강지진동을 이용한 지반응답의 Amplication Factor 스펙트럼 분석)

  • 김준경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.88-93
    • /
    • 1997
  • Amplication factor spectrum has been obtained and compared with standard Response Spectrum using the observed strong ground motions database. The observed ground motions from the Miramichi, Nahanni, Saguenay and New Madrid Earthquake (vertical component 19. horizontal component 36). which are estimated to represent domestic seismotectonic characteristics such as seismic source, attenuation, and site effect, are used for the analysis of amplication factor spectrum. Amplication factor has been calculated using both observed peak values and results from responses to the observed horizontal and vertical ground motions. The comparison shows that the amplication factors resultant from this study exceeds those of Standard Response Spectrum at relatively higher frequencies. The results implie that the characteristics of the seismic strong ground motion which may represent the domestic seismotectonic characteristics differs from those of Standard Response Spectrum, which are resultant from the strong ground motions observed mainly at the westem United States.

  • PDF

Characteristics of Spectrum using Observed Ground Motions from the Yongwol and the KyoungJu Earthquakes (영월 및 경주지진 파형의 주파수 분석)

  • 김준경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.407-412
    • /
    • 1998
  • Amplification factor spectrum, using the observed strong ground motions database, has been obtained and compared with Standard Response Spectrum, which were suggested by US NRC. The observed ground motions from the Yongwol and the Kyoungju Earthquake, respectively, which are suppose to represent domestic seismotectonic characteristics such as seismic source, attenuation, and site effect, are used for the analysis of amplification factor spectrum. Amplification factors have been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal and vertical ground motions. The comparison shows that the amplification factors resultant from this study exceeds those of Standard Response Spectum at relatively higher frequencies. The results suggest that the characteristics of the seismic strong ground motion, which are supposed to represent the domestic seismotectonic characteristics, differs from those of Standard Response Spectrum, especially at hither frequencies

  • PDF

Characterization of earthquake ground motion of multiple sequences

  • Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.629-647
    • /
    • 2012
  • Multiple acceleration sequences of earthquake ground motions have been observed in many regions of the world. Such ground motions can cause large damage to the structures due to accumulation of inelastic deformation from the repeated sequences. The dynamic analysis of inelastic structures under repeated acceleration sequences generated from simulated and recorded accelerograms without sequences has been recently studied. However, the characteristics of recorded earthquake ground motions of multiple sequences have not been studied yet. This paper investigates the gross characteristics of earthquake records of multiple sequences from an engineering perspective. The definition of the effective number of acceleration sequences of the ground shaking is introduced. The implication of the acceleration sequences on the structural response and damage of inelastic structures is also studied. A set of sixty accelerograms is used to demonstrate the general properties of repeated acceleration sequences and to investigate the associated structural inelastic response.

Seismic Response Analysis Method of Bridge Considering Foundation-Soil Interaction and Multi-support Input Motion (기초-지반 상호작용을 고려한 교량의 다지점 입력 지진해석 기법)

  • Kim, Hyo-Gun;Choi, Kwang-Kyu;Eom, Young-Ho;Kwon, Young-Rog
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.284-291
    • /
    • 2006
  • This paper presents a seismic response analysis of bridge structures considering foundation-soil interaction and multi-support input motion. In the earthquake analysis of structures it is usually assumed that the input ground motion is the same at all supports. However, this assumption is not justified for long structures like bridges, because observations have shown the earthquake ground motion can vary considerably within relatively small distances. When the soil under the foundation is relatively soft and deep, analysis for foundation-soil interaction always must be peformed. To consider foundation-soil interaction, soil response analysis is preceded, and after determining the material characteristics of foundation element obtained by foundation-soil interaction analysis at the frequency domain, the seismic response analysis of bridge superstructure with the equivalent spring and damper is performed. Finally, influences of multi-support input motion, which are affected by different soil characteristics, are also considered in this paper.

  • PDF

Earthquake response of a core shroud for APR1400

  • Jhung, Myung Jo;Choi, Youngin;Oh, Chang-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2716-2727
    • /
    • 2021
  • The core shroud is one of the most important internal components of the reactor vessel internals because it meets the neutron fluence directly emitted by the nuclear fuel. In particular, dynamic effects for an earthquake should be evaluated with respect to the neutron irradiation flux. As a prerequisite to this study, simplified and detailed finite element models are developed for the core shroud using the ANSYS Design Parametric Language. Using the El Centro earthquake, seismic analyses are performed for the simplified and detailed core shroud models. Modal characteristics are obtained and their results are used for a time history analysis. Response spectrum analyses are also performed to access the degree of seismic excitation. The results of these analyses are compared to investigate the response characteristics between the simplified and detailed core shroud models from the time history and response spectrum analyses.

Characteristic Investigation of the Bedrock Earthquake Records for the Structural Time-History Seismic Analyses (구조물의 시간이력 지진해석을 위한 암반지진기록의 특성분석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.89-95
    • /
    • 2008
  • Until recently lots of time-history seismic analyses were performed with the earthquake motions recorded at the soft soil surface without taking into account the effects of the soft soil amplification. However, it is important to utilize the bedrock seismic motions for the rational seismic analyses of a structure considering the site soil conditions. In this study, 26 bedrock earthquake records were selected from publicly available 1557 seismic records provided by the Pacific Earthquake Engineering Research Center (PEER) for the study, and the characteristics of them were investigated. Study results showed that it is not reasonable to estimate earthquake acceleration intensity from the magnitude of an earthquake without considering the site soil conditions and it is also hard to draw any general relationships between earthquake acceleration intensity, earthquake magnitude and epicenter distance with bedrock earthquake records in the PEER database. However, 26 bedrock earthquake records selected in this study can be utilized for the time-history seismic analyses of a structure-soil system as bedrock earthquake ones, and it is also confirmed that it is necessary to take into account acceleration intensity, magnitude, epicenter distance and site conditions simultaneously for the proper use of those selected earthquake records.

A Study on Liquefaction Assessment of Moderate Earthquake Region concerning Earthquake Magnitude of Korea (국내 지진규모를 고려한 중진 지역에서의 액상화 평가방법에 관한 연구)

  • Kim, Soo-Il;Park, Keun-Bo;Park, Seong-Yong;Seo, Kyung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.125-134
    • /
    • 2006
  • Conventional methods for the assessment of liquefaction potential were primary for severe earthquake regions $(M{\geq}7.5)$ such as North America and Japan. In Korea, an earthquake related research has started in 1997, but most contents in the guidelines were still quoted from literature reviews of North America and Japan, which are located in strong earthquake region. Those are not proper in a moderate earthquake regions including Korea. Also the equivalent uniform stress concept (Seed & Idriss, 1971) using regular sinusoidal loading which is used, in a conventional method for the assessment of liquefaction potential, can't reflect correctly the dynamic characteristics of real irregular earthquake motions. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. From the results, screening limits in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions. Also from the tests using constant wedge loading and incremental wedge loading, the characteristics of liquefaction resistance of saturated sand under irregular ground motions are investigated.

Study on the Earthquake Ground Motion Attenuation Characteristics in Korea and Japan using 2005 Fukuoka Earthquake Records (2005년 Fukuoka 지진기록을 이용한 국내 및 일본의 지진동 감쇄 특성 평가)

  • Choi, In-Kil;Nakajima, Masato;Choun, Young-Sun;Ohtori, Yasuki;Yun, Kwan-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.45-54
    • /
    • 2006
  • The characteristics of the ground motion attenuation in Korea and Japan were estimated using the earthquake ground motions recorded at the equal distance observation stations by KMA, K-NET and KiK-net of Korea and Japan. The ground motion attenuation equations proposed for Korea and Japan were evaluated by comparing the predicted value fer the Fukuoka earthquake with the observed records. The predicted value from the attenuation equations shows good agreement with the observed records and each other. It can be concluded from this study that the ground motion attenuation equations developed for Japan can be used usefully for the prediction of a ground motion from far field earthquake more than 200 km and for the evaluation of the far field ground motion attenuation equations proposed fer Korea.