• Title/Summary/Keyword: Earthquake Characteristics

Search Result 1,219, Processing Time 0.03 seconds

Equivalent Damping Ratio Based on Earthquake Characteristics of a SDOF Structure with an MR Damper (지진특성에 따른 MR감쇠기가 설치된 단자유도 구조물의 등가감쇠비)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.87-93
    • /
    • 2008
  • Seismic control performance of MR dampers, which have severe nonlinearity, varies with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally. response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

Evaluation of Seismic Design Force by Earthquake Response Analysis of Water Tanks Installed in RC Buildings (건축물에 설치된 물탱크의 지진응답해석을 통한 설계하중 평가)

  • Baek, Eun Rim;Oh, Ji Hyeon;Choi, Hyoung Suk;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.221-229
    • /
    • 2019
  • Several water tanks installed in the building were damaged during the Gyeongju earthquake (2016) and the Pohang earthquake (2017). Since a water tank for fire protection is very important component, seismic safety should be ensured. In this study, an interaction between a water tank and a building was studied by the dynamic analysis of the RC building with the water tank. In case the water tank was installed on the roof of the RC building, it was confirmed that it did not significantly affect the response of the building. Based on the result, dynamic response characteristics of the water tank in the building were studied using two SDOF models represented dynamic behavior of the water tanks under earthquake. An earthquake time-history analysis was carried out with variables of aspect ratio of the tank, story of the building, and installed location in the building using three kinds of earthquakes.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake (2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점)

  • Lee, Cheol Ho;Park, Ji-Hun;Kim, Taejin;Kim, Sung-Yong;Kim, Dong-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.

Study on Earthquake Hazard Response Process by 'Pohang Earthquake' Case Analysis (포항지진사례 분석을 통한 지진재난 대응 프로세스에 관한 연구)

  • Kang, Hyeong Gu;Park, Ki-Jong;Kim, HyeWon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.561-571
    • /
    • 2021
  • The 2017 Pohang earthquake left us with issues related to long-term repair and restoration from massive earthquake damage. The existing Earthquake response manual was insufficient to consider the flow of earthquake disaster work and the characteristics of long-lasting earthquake disaster. Accordingly, It is important to analyze and record how to earthquake response work was carried out during the Pohang earthquake. The functions that require the most work and manpower in the event of an earthquake disaster were emergency life stabilization support, facility emergency recovery, and energy functional restoration. As a result of analyzing the difficulties and problems of disaster response by function, it was found that the prevention and preparation for damage in advance was insufficient for each function. In conclusion, we subdivided the response step applied with the concept of time and presented the overall work flow process for thirteen collaboration functions. It is expected that this result will help disaster managers to work effectively in the event of a large scale earthquake.

Seismic Response of R/C Structures Subjected to Artificial Ground Motions Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진동을 입력한 철근콘크리트 구조물의 지진응답 특성의 고찰)

  • Jun, Dae-Han;Kang, Ho-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the seismic response values of multistory reinforced concrete structures by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past major earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. The input ground motions applied to this study have identical elastic acceleration response spectra, but have different phase angles. The purpose of this study is to investigate their validity as input ground motion for nonlinear seismic response analysis. As expected, the response quantifies by simulated earthquake waves present better stable than those by real recording of ground motion. It was concluded that the artificial earthquake waves generated in this paper are applicable as input ground motions for a seismic response analysis of building structures. It was also found that strength of input ground motions for seismic analysis are suitable to be normalize as elastic acceleration spectra.

Earthquake events classification using convolutional recurrent neural network (합성곱 순환 신경망 구조를 이용한 지진 이벤트 분류 기법)

  • Ku, Bonhwa;Kim, Gwantae;Jang, Su;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.592-599
    • /
    • 2020
  • This paper proposes a Convolutional Recurrent Neural Net (CRNN) structure that can simultaneously reflect both static and dynamic characteristics of seismic waveforms for various earthquake events classification. Addressing various earthquake events, including not only micro-earthquakes and artificial-earthquakes but also macro-earthquakes, requires both effective feature extraction and a classifier that can discriminate seismic waveform under noisy environment. First, we extract the static characteristics of seismic waveform through an attention-based convolution layer. Then, the extracted feature-map is sequentially injected as input to a multi-input single-output Long Short-Term Memory (LSTM) network structure to extract the dynamic characteristic for various seismic event classifications. Subsequently, we perform earthquake events classification through two fully connected layers and softmax function. Representative experimental results using domestic and foreign earthquake database show that the proposed model provides an effective structure for various earthquake events classification.

Study on Physical Characteristics of Historical and Artificial Ground Acceleration (역사지진 및 인공지진의 물리적 특성에 관한 연구)

  • 이대형;정영수;전환석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • Because of the continual occurrence of minor and moderate earthquakes in Korean peninsula, it is generally considered that Korean is not located in a safe region against probable earthquake any more, even though being recognized as a safe country in earthquake. It is in particular noted that nowadays there has been much concern about unexpected tragedy due to probable earthquake since the disaster of 1995 kobe earthquake. Thus, the objective of this research is to develop appropriate design spectrum which could be practicably used in seismic design of important structures taking into consideration of local physical characteristics. Particularly, we have to keep in mind the lessons from 1985 Mexico earthquake which had disregarded deep research on local ground conditions, being a possible magnification phenomena of ground motions in weak soil layer. Various spectra has been described based on the analysis of historical earthquakes, and generate the artificial ground acceleration. Also, rational numbers of artificial ground acceleration is investigated by the seismic analysis for skew slab bridges.

  • PDF

Application of Satellite Imagery to Research on Earthquake and Volcano (지진·화산 연구에 대한 위성영상 활용)

  • Lee, Won-Jin;Park, Sun-Cheon;Kim, Sang-Wan;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1469-1478
    • /
    • 2018
  • Earthquakes and volcanic eruptions are disaster that causes billions of dollars in property damage and the loss of human life. Therefore, it is required to effectively monitor earthquakes and volcanoes. With the increase of satellite data, researches on earthquake and volcano using satellite imagery has been improved. Satellite images can be divided into three types i.e. optical, thermal, Synthetic Aperture Radar (SAR) and each image has different characteristics. In this article, we summarized its advantages and disadvantages of each type of satellite image. Moreover, we investigated the previous researches about earthquake and volcano using satellite images. Finally, we suggest application method to respond earthquake and volcano disaster using satellite images.

Performance-based earthquake engineering in a lower-seismicity region: South Korea

  • Lee, Han-Seon;Jeong, Ki-Hyun
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.45-65
    • /
    • 2018
  • Over the last three decades, Performance-based Earthquake Engineering (PBEE) has been mainly developed for high seismicity regions. Although information is abundant for PBEE throughout the world, the application of PBEE to lower-seismicity regions, such as those where the magnitude of the maximum considered earthquake (MCE) is less than 6.5, is not always straightforward because some portions of PBEE may not be appropriate for such regions due to geological differences between high- and low-seismicity regions. This paper presents a brief review of state-of-art PBEE methodologies and introduces the seismic hazard of lower-seismicity regions, including those of the Korean Peninsula, with their unique characteristics. With this seismic hazard, representative low-rise RC MRF structures and high-rise RC wall residential structures are evaluated using PBEE. Also, the range of the forces and deformations of the representative building structures under the design earthquake (DE) and the MCE of South Korea are presented. These reviews are used to propose some ideas to improve the practice of state-of-art PBEE in lower-seismicity regions.