• Title/Summary/Keyword: Earth resistivity

Search Result 469, Processing Time 0.028 seconds

Electrical Resistivity at Room Temperature and Relation between Physical Properties of Core Samples from Ulleung Island (울릉도 시추 코어의 상온 전기비저항과 물성 간의 상관성)

  • Lee, Tae Jong;Lee, Sang Kyu;Yun, Kwan-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.171-180
    • /
    • 2015
  • Electrical resistivity of 23 core samples from Ulleung Island at dry or saturated condition has been measured along with dry density and effective porosity, and the relations between the properties has also been discussed. Upper and lower bounds of electrical resistivity at room temperature can be provided by the dry- and saturated-resistivity, respectively. Injecting nitrogen gas to the pore space at the very end of drying process can prevent humid air from getting into the pore space, so that measurement of dry-resistivity can be less affected by humidity in the air. Dry density and porosity have very close correlation; the ratio between increase of porosity and the decrease of density showed distinct relation to the rock types, such that basaltic rocks showed higher ratio while trachytic rocks showed lower. Saturated resistivity showed close correlation to density and effective porosity of the rock sample, while dry resistivity didn't.

Distribution of Resistivity Zones Near Nari Caldera, Ulleung-do, Korea, Inferred from Modified Dipole Arrays (변형 쌍극자배열법을 적용한 울릉도 나리 칼데라 주변 조면안산암 지역의 비저항분포 특성 분석)

  • Kim, Ki-Beom;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Resistivity surveys can identify the distribution of geological units and structures (including fragmented fault zones), the extent of weathered and modified geological strata, and the characteristics of groundwater. This study aims to analyze the underground sedimentary layers and geological structures near the Nari and Albong Basins of Ulleung-do, Korea, focusing on six survey lines to identify the spatial trends in subsurface resistivity. A modified dipole array method (D method) was employed, combining resistivity results obtained by existing dipole array methods (A and C methods). The modified method provides optimal analysis of the cross-section of underground resistivity, and shows a clear boundary between a low-resistivity zone (${\leq}500{\Omega}{\cdot}m$) of sedimentary layers and weak zones, and a high-resistivity zone (${\geq}5,000{\Omega}{\cdot}m$) of volcanic rock (trachyandesite). The estimated average thickness of the sedimentary layers is 50~100 m for the Albong Basin and 100~200 m for the Nari Basin. An anomaly zone, different from the weak zone in the bedrock, is identified as a caldera fault, and the low-resistivity zone extends from the surface down to the lowest survey depths.

Application of Electrical Resistivity Tomography to Analyze Soil Properties in Unsaturated Bone (불포화대 토양 특성 분석을 위한 전기비저항 토모그래피의 적용성)

  • Yong Hwan-Ho;Song Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.184-190
    • /
    • 2004
  • To analyze soil properties of unsaturated zone, we applied electrical resistivity tomography(ERT) of high resolution image. From linear relationship with each soil texture between results of ERT and soil properties such as electrical conductivity of pore water, water contents and ionic contents, we could be analyzed the result of ERT more effectively. Consequently, ERT can be useful for estimating soil properties between the two holes and evaluating indirectly pH and organic contents of soil.

Measurement and Analysis of Earth Resistivity for the Substation Grounding Design (변전소 접지설계를 위한 대지고유저항의 측정과 해석)

  • Han, P.;Kim, J.Y.;Choi, J.K.;Jung, G.J.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.807-812
    • /
    • 1997
  • For an equivalent uniform soil model to multiple-layered soil structure, ground depth, which is used in the calculation of equivalent resistivity, should be varied according to the size of grounding area. In case of 150 kV substation grounding design, 15 m of ground depth has been used and 25 m for 345 kV, But applying these ground depths can lead to errors in grounding resistance calculation, and these errors are coming from the poor representation of those depths to real soil resistivities. In this paper, the soil resistivity measurement techniques by Wenner method and grounding resistance calculation results by computer simulation were presented. Case studies contain the area from 3,000 to $30,000\;m^2$ and measuring space from of m to $100{\sim}250\;m$, Based of the computation results, 50 m, 60 m and 80 m of ground depth for less than 30, 40 and 70 m of equivalent hemispherical radius were proposed respectively.

  • PDF

Archaeological Investigations in Urban Areas through Combined Application of Surface ERT and GPR Techniques

  • Papadopoulos, Nikos;Yi, Myeong-Jong;Sarris, Apostolos;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.113-118
    • /
    • 2008
  • Among the geophysical methods, Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) comprise the most promising techniques in resolving buried archaeological structures in urban territories. In this work, two case studies which involve an integrated geophysical survey employing the surface three dimensional (3D) ERT and GPR techniques, in order to archaeologically characterize the investigated areas, are presented. Totally more than 4000 square meters were investigated from the test field sites, which are located at the centre of two of the most populated cities of the island of Crete, in Greece. The ERT and the GPR data were collected along dense and parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way applying specific filters to the data in order to enhance their information context. Finally, horizontal depth slices representing the 3D variation of the physical properties were created and the geophysical anomalies were interpreted in terms of possible archaeological structures. The subsequent excavations in one of the sites verified the geophysical results, enhancing the applicability of ERT and GPR techniques in the archaeological exploration of urban territories.

  • PDF

A Method for Evaluating Electric Shock Hazards Based on Human Body Current (인체전류를 기반으로 하는 감전의 위험성 평가방법)

  • Lee, Bok-Hee;Yoo, Yang-Woo;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.108-114
    • /
    • 2011
  • In order to mitigate the possible hazards from electric shock due to the touch and step voltages, the high resistivity material such as gravel is often spread on the earth's surface in substations. When the grounding electrode is installed in two-layer soil structures, the surface layer soil resistivity is different with the resistivity of the soil contacted with the grounding electrodes. The design of large-sized grounding systems is fundamentally based on assuring safety from dangerous voltages within a grounding grid area. The performance of the grounding system is evaluated by tolerable touch and step voltages. Since the floor surface conditions near equipment to be grounded are changed after a grounding system has been constructed, it may be difficult to determine the tolerable touch and step voltage criteria. In this paper, to propose an accurate and convenient method for evaluating the protective performance of grounding systems, the propriety of the method for evaluating the current flowing through the human body around on a counterpoise buried in two-layer soils is presented. As a result, it is reasonable that the grounding system performance would be evaluated by measuring and analyzing the current flowing through the human body based on dangerous voltages such as the touch or step voltages and the contact resistance between the ground surface and feet.

Subsurface Imaging by a Small-loop EM Survey (소형루프 전자탐사법에 의한 지하 영상화)

  • Lim Jin-Taik;Cho In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.187-194
    • /
    • 2003
  • A small-loop electromagnetic (EM) system using multiple frequencies has advantages in survey speed and cost despite of limitation on its depth of investigation. Therefore, small-loop EM surveys have been frequently used on various site investigations involving engineering and environmental problems. We have developed a subsurface imaging technique using small loop EM data. We used a one-dimensional (ID) inversion method to reconstruct a subsurface image from frequency EM sounding data. Tests using simulated data show that the method can reasonably recover the subsurface resistivity structure. Also, the method was tested on field data obtained with multiple frequency small loop EM system at a farm in Chunchon, Korea. The resistivity image obtained form field data compares favorably with the image from the dipole-dipole resistivity survey.

Geostatistics for Bayesian interpretation of geophysical data

  • Oh Seokhoon;Lee Duk Kee;Yang Junmo;Youn Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.340-343
    • /
    • 2003
  • This study presents a practical procedure for the Bayesian inversion of geophysical data by Markov chain Monte Carlo (MCMC) sampling and geostatistics. We have applied geostatistical techniques for the acquisition of prior model information, and then the MCMC method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter. This approach provides an effective way to treat Bayesian inversion of geophysical data and reduce the non-uniqueness by incorporating various prior information.

  • PDF

The Influence of Re2O3(RDy, Er) on the Electromagnetic Properties of Mn-Zn Ferrite (Re2O3(RDy, Er)가 Mn-Zn ferrite의 전자기적 특성에 미치는 영향)

  • 백승철;최우성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.178-183
    • /
    • 2002
  • The effects of Dy$_2$O$_3$and Er$_2$O$_3$addition on the electromagnetic properties of Mn-Zn ferrite were investigated in the doping concentration range from 0.05 wt% to 0.25 wt%. All samples were prepared by standard fabrication of ferrite ceramics. The XRD patterns of sample were observed spinel and secondary phase. The densities of sample were showed nearly constant values. As the increased additive, electrical resistivity, initial permeability and real component of the series complex permeability increased with setting limits each other. Excess doped with Dy$_2$O$_3$ and Er$_2$O$_3$, those values decreased. The maximum electrical resistivity was observed with 0.15 we% and initial permeability was observed with 0.05 wt%. Magnetic loss decreased with additive and then increased in proportion to increased.

Monitoring water injection with borehole ERT: preliminary results of an experiment carried out in Sindos (N. Greece)

  • Tsourlos, Panagiotis;Kim, Jung-Ho;Vargemezis, George;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.87-92
    • /
    • 2007
  • This work describes the installation and preliminary measurements of an electrical resistivity tomography (ERT) system to monitor the injection of recycled water into a confined aquifer in the area of Sindos (Thessaloniki N. Greece). The aim is to provide, through time-lapse ERT measurements and processing, geoelectrical images of rather increased volumetric sampling around and between the holes and to obtain improved understanding of the flow and transport of the injected water. The details about the general setting, the construction and installation of the ERT cables into the boreholes are explained in full. Preliminary measurements involving single and cross-hole ERT measurements were obtained and processed with a 2D inversion algorithm to produce images of the subsurface. Results depict a very good correlation between ERT images and the lithology and resistivity logs; an indication of the reliability of the approach.

  • PDF