• Title/Summary/Keyword: Earth load

Search Result 449, Processing Time 0.027 seconds

Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS) (공학적인 지열시스템(EGS)을 이용한 지열발전 기술)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

Evaluations of load-deformation behavior of soil nail using hyperbolic pullout model

  • Zhang, Cheng-Cheng;Xu, Qiang;Zhu, Hong-Hu;Shi, Bin;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.277-292
    • /
    • 2014
  • Soil nailing, as an effective stabilizing method for slopes and excavations, has been widely used worldwide. However, the interaction mechanism of a soil nail and the surrounding soil and its influential factors are not well understood. A pullout model using a hyperbolic shear stress-shear strain relationship is proposed to describe the load-deformation behavior of a cement grouted soil nail. Numerical analysis has been conducted to solve the governing equation and the distribution of tensile force along the nail length is investigated through a parametric study. The simulation results are highly consistent with laboratory soil nail pullout test results in the literature, indicating that the proposed model is efficient and accurate. Furthermore, the effects of key parameters, including normal stress, degree of saturation of soil, and surface roughness of soil nail, on the model parameters are studied in detail.

Development of the computer program calculating the stress induced by various loads for buried natural gas pipeline (II) (매설 천연가스 배관의 제반하중에 의한 응력 계산용 프로그램 개발 (II))

  • Bang I.W.;Kim H.S.;Yang Y.C.;Kim W.S.;Oh K.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.26-33
    • /
    • 1998
  • The thickness of buried gas pipeline is determined mainly with internal pressure and location factor according to the requirements of ANSI B3l.8. But the stress of buried gas pipeline is determined by not only internal stress but also external loads. The change of burying and environmental conditions, therefore, may result in increasing stress of pipeline. In order to avoid the decrease of safety degree resulting from change of environmental condition, the evaluation of stress level shall be necessary. The reliable equations have been developed for calculating stress of buried pipeline from internal pressure, earth load, vehicle load, ground subsidence. But they are very difficult to understand and use for non-specialist. For easy calculation of non-specialist, the new computer program to calculate stress of buried natural gas pipeline have been developed. The program can calculate maximum stress resulted from earth load, vehicle load, thermal load, four type ground subsidence. The stress is calculated by the equations and extrapolation of the graph resulted from FEM. In this paper, as the series of paper I, the operating method and the functions of the program is explained.

  • PDF

Static behaviors of self-anchored and partially earth-anchored long-span cable-stayed bridges

  • Xie, Xu;Yamaguchi, Hiroki;Nagai, Masatsugu
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.767-774
    • /
    • 1997
  • In this paper, three dimensional static behaviors of the self-anchored and partially earth-anchored cable-stayed bridges, with a span of 1400 meters, under wind loading are studied by using a 3D geometrical nonlinear analysis. In this analysis, the bridges both after completion and under construction are dealt with. The wind resistant characteristics of the both cable-stayed systems are made clear. In particular, the characteristics of the partially earth-anchored cable systems, which is expected to be a promising solution for extending the span of the cable-stayed systems further, is presented.

Evaluation of Dynamic Stability for Structural Bar Reinforced Precast and Prestressed Retaining Wall for Moving Train Load (이동열차하중에 대한 강봉으로 보강된 프리캐스트 프리스트레스트 옹벽의 동적 안정성 평가)

  • Lee, Il Wha;Um, Ju Hwan;Lee, Kang Myung;Keum, Chang Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.190-198
    • /
    • 2011
  • The precast production has many advantages by fast construction period, labor-saving and high quality. In recent years, the application of the precast product has been increased in the earth retaining wall field. This paper presents the results of the numerical analysis that was carried out to evaluate the dynamic stability of precast and prestressed earth retaining wall under moving train load. The two-dimensional FEM analysis was used to the numerical analyses. The train load to act on trackbed is combined by the real measured roughness phase angle and quasi-static load. The dynamic stability is analysed by the displacement, acceleration and stress under moving train load at each specified location. The results of the analysis show that the precast and prestressed retaining wall has very stable capability for the railway.

A Study on Dynamic Characteristics of Electrical Fire Prevention Control Devices with a lamp and a motor load (전등 부하 및 전동기 부하시 전기화재예방 제어장치의 동작 특성에 관한 연구)

  • Lee, Sang-Ho;Oh, Hong-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • Recently, the occurrences of electrical fire have been suppressed by an earth leakage breaker(ELB), a no fuse breaker(NFB) and a fuse in case of an earth leakage, a short circuit and an over current. But it is impossible for the ELB to break the circuit in the case of the failure of pressure contacts on connecting points and the momentary short circuit. Therefore, it is require to study the constructive problem of the ELB. In this paper, we have developed the auxiliary control device, electrical fire prevention control device(EFPCD), of the ELB. And we have tested the operation characteristics of the ELB according to the load(R, L) As a result of this experiment, we could prevent the electrical fire due to the spark and the overheat occurring in the failure of pressure contacts on connecting points and the momentary short circuit.

  • PDF

An analysis study on earth pressure trends during construction of Gyungbu High Speed Railway using Concrete Track (콘크리트궤도 적용 경부고속철도의 시공 중 토압 경향 분석 연구)

  • Kim, Ki-Hwan;Kim, Dae-Sang;Na, Sung-Hoon;Shin, Ki-Dae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.671-679
    • /
    • 2010
  • The construction of concrete track for the first time in Korea gives lots of meanings to civil engineering in various aspects. Settlement level needs to be kept minimal for the safety of the track. Concrete track has different structural characteristics comparing to conventional ballast track, so load distribution in concrete track is also different. Since it is the first time to build concrete track, there are very few experience and data available on the subject. Therefore it is important to evaluate how much load is transferred to the ground due to the running vehicle in concrete track and to determine the optimal thickness of layers. In this research, 9 individual earth pressure cells were installed at OOOk930 site in 2nd stage of Kyungbu high speed railway during under construction. The in-situ pressure data were measured at each layers during pump-car and locomotive were moving on the high speed railway surface.

  • PDF

Settlement analysis of viscoelastic foundation under vertical line load using a fractional Kelvin-Voigt model

  • Zhu, Hong-Hu;Liu, Lin-Chao;Pei, Hua-Fu;Shi, Bin
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.67-78
    • /
    • 2012
  • Soil foundations exhibit significant creeping deformation, which may result in excessive settlement and failure of superstructures. Based on the theory of viscoelasticity and fractional calculus, a fractional Kelvin-Voigt model is proposed to account for the time-dependent behavior of soil foundation under vertical line load. Analytical solution of settlements in the foundation was derived using Laplace transforms. The influence of the model parameters on the time-dependent settlement is studied through a parametric study. Results indicate that the settlement-time relationship can be accurately captured by varying values of the fractional order of differential operator and the coefficient of viscosity. In comparison with the classical Kelvin-Voigt model, the fractional model can provide a more accurate prediction of long-term settlements of soil foundation. The determination of influential distance also affects the calculation of settlements.

Earth Pressure Acting on Rigid Retaining Wall due to the Dynamic Load (동하중에 의한 강성벽체에 작용하는 토압)

  • 박종덕;전용백
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.157-168
    • /
    • 2000
  • 토류구조물의 안정문제로는 장단기적으로 정적인 경우와 동적인 경우, 그리고 지반의 동적 거동특성, 흙의 강도저하 등을 미리 파악하여 기술적인 대처를 할 필요가 있을 것이다. 본 연구에서는 실내 모형 실험을 통하여 구조물의 배면에 토성이 다른 일반모래, 표준모래, 점성토를 뒷채움하여 다짐없이 강사만 하고, 룰러다짐, 진동다짐을 하여 토피의 수평 진동거리를 길게, 짧게 그리고 중간으로 하여 강성벽체에 작요?는 수평토압에 대한 정적, 동적 특성을 규명하는 것이다. 모형 실험장치로는 실험대, 토조, 토압측정장치, 진동하중 발생장치, 진동측정장치, 강사기, 롤러 등을 설치하여 거리에 따른 병진운동으로 가속도와 수평토압, 수평토압계수, 전체토압, 토압의 작용점, 지진토압증분 증을 구하여, 실험결과와 기존 이론결과, 그리고 유한요소 해석결과와 비교 고찰하였다.

  • PDF

Overturning Resistance of Plain Concrete Piers in OSPG Railroad Bridges

  • Rhee, In-Kyu;Park, Joo-Nam;Choi, Eun-Soo
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The steel plate-girder bridges with concrete gravity piers have possibilities of overturning by lateral inertial force which can be reproduced by sudden earthquake attack. This paper explores an overturning mechanism of existing concrete gravity pier onto the sandy soil in the event of lateral push-over load by in-situ experimental observation. The in-situ push-over experiment for pier with earth anchors between spread footing and rock beds exhibits a reasonable enhancement of ductility against overturning. In unanchored system, a flexural crack at cold joint of concrete pier is not developed because of the over-turning of the pier. This leads a global instability (rotation) of pier-footing system with relatively low stresses in pier itself. While a lateral load is persistently increased in anchored system, the successive flexural cracking failure at cold joint is observed even after the local shear failure of soil due to redistribution of stress equilibrium between soil and pier structure as long as a tensile action of anchor cable is active.

  • PDF