• Title/Summary/Keyword: Earth construction

Search Result 1,220, Processing Time 0.023 seconds

Nonlinear Traveltime Tomography Method Using Fresnel Zone (Fresnel 영역을 고려한 비선헝 주시 토모그래피)

  • Cho, Chang-Soo;Ji, Jun;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • Recently seismic tomography has been widely used to visualize subsurface structure for resource explorations and construction site evaluation. We studied a way to include fresnel zone concept in the conventional ray-based traveltime tomography. The algorithm developed uses the same order of computing time as the conventional traveltime to mography but incorporates the rigorous wavepath concept of wave-equation tomography. Some experiments to synthetic and real data show reasonable results compared to conventional ray-based traveltime tomography.

  • PDF

Research on Transition of Road Bed of Wuhan-Guangzhou Passenger Line and Bridge

  • Kang, Bo-Soon;Jun, Yang
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.180-186
    • /
    • 2009
  • High speed railway challenge the design, construction and maintaining of traditional railway, many traditional design concepts have been changed. Transition of railway and bridge has two main problems. one is that different lines have different ability of resisting distortion in area of trial load, which was known that problem of smooth transition of stiffness, the other is that differential settlement between artificial structure and earth structure cause bending of railway. The two problems have effect on train moving. The principle of processing transition of railway and bridge is same in world, but it is difficult to find relationship between design standard of transition, vehicle performance, line standard, design speed and so on form documentation and data reports. Based on mechanics, the paper analyzed dynamic performance of transition of high speed railway, studied various rough elements which is effective to train moving, built mathematical model of interaction of train and transition of high speed railway and developed numerical simulation software. In various different work conditions, we did great quantity of numerical simulation, comprehensive analysis and performance analysis.

  • PDF

Investigation for the Report of DC Traction Stray Current Protection (도시철도 전식방지 조사보고 현황)

  • Lee, Hyun-Goo;Ha, Tae-Hyun;Jung, Ho-Sung;Han, Moon-Sub;Bae, Jeong-Hyo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.281-285
    • /
    • 2008
  • Corrosion of metallic structures arises when an electric current flows from the metal into the electrolyte such as soil and water. The potential difference across the metal-electrolyte interface, the driving force for the corrosion current, can emerge due to a variety of temperature, pH, humidity and resistivity etc.. With respect to a given structure, a stray current is to be defined as a current flowing on a structure that is not part of the intended electrical circuit. Stray currents are caused by other cathodic protection installations, grounding systems and welding posts, referred to as steady state stray currents. But most often traction systems like railroads and tramlines are responsible for large dynamic stray currents. This type of stray current is generally results from the leakage of return currents from large DC traction systems that are grounded or have a bad earth-insulated return path. This paper investigates the reports, which is made for protecting the electrical corrosion by the DC traction stray current before the construction period.

  • PDF

The fire-risks of cost-optimized steel structures: Fire-resistant and hot-rolled carbon steel

  • Garcia, Harkaitz;Cuadrado, Jesus;Biezma, Maria V.;Calderon, Inigo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.67-75
    • /
    • 2021
  • This work studies the behaviour of a steel portal frame selection under fire exposure, considering both span lengths and fire exposure times as variables. Such structures combine carbon steel (S275), fireproof micro-alloyed steel (FR), and coatings of intumescent paint with variable thicknesses, improving thereby the flame retardant behaviour of the steel structure. Thus, the main contribution of this study is the optimization of the portal frames by combining both steels, analysing the resulting costs influence on the final dimensions. Besides, the topological optimization of each steel component within the structure is also defined, in accordance with the following variables: weather conditions, span, paint thickness, and cost of steel. The results mainly confirmed that using both FR and S275 grades with intumescent painting is the Pareto optimum when considering performance, feasibility and costs of such portal frames widely used for industrial facilities.

Decadal Observation and Studies in the Amundsen Sea, Antarctica: Insights from Radiocarbon Values (10여년간의 서남극 아문젠해 관측과 연구: 방사성탄소동위원소 값을 중심으로)

  • Kim, Minkyoung
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.83-97
    • /
    • 2022
  • The Amundsen Sea in West Antarctica is one of the most affected regions by climate change, but it is one of the least studied realms due to difficulties in access. Korea Polar Research Institute (KOPRI) launched a research project in the Amundsen Sea in 2010 using the icebreaker research vessel (IBRV) Araon and has been conducting various research initiatives. In this paper, previous researches derived from the Amundsen Sea Embayment by Korean researchers are introduced. Through previous studies, researchers have been able to interpret the environmental and biogeochemical changes according to the inflow Circumpolar Deep Water (CDW) and provide information for climate models. In particular, researches using radiocarbon isotopes (14C) were introduced to understand the physical and biogeochemical mechanisms of the carbon cycle in the Amundsen Sea. Opportunely, with the construction of a second icebreaker research vessel, the direction for systematic and long-term polar data acquisition can be presented.

Productivity analysis using a Fleet Management System for Construction Equipment (건설장비 플릿관리 시스템 적용시 생산성 분석)

  • Lim, So-Young;Kim, Sung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.87-95
    • /
    • 2020
  • With the advent of the 4th industrial revolution and the combination of IoT, there have been diverse domestic and foreign researches for the development of construction industry. Especially, in the large-scale earthwork site where many and various construction equipments are put into, the control system between construction equipments is important for the increase of productivity. Thus, after developing the fleet management system for the optimum operation of construction equipments, the problems were checked and improved for each step in the process of application at site. In order to verify the site application process of the fleet management system for the optimum operation of construction equipments, the analysis on the productivity was performed by inputting the data used for the actual site and the site data using this system and then comparing the data through simulation. The analysis was limited to excavator and dump. In the results of the analysis, the rate of work per hour was increased to the range of 4 % while the cost price was decreased to 4 %. Even though the results of the analysis could be different depending on the site applied, the results showing the increase of workload of equipments and the decrease of cost price in the complex project at earthwork site verify the increase of productivity.

A Study on the Improvement of a Fleet Management System for Construction Equipment (건설장비 플릿관리 시스템 개선에 관한 연구)

  • Kim, Sung-Keun;Lim, So-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1063-1076
    • /
    • 2017
  • To improve the productivity of the earthwork, a fleet management system for construction equipment was suggested in previous studies. But there were some gaps between theory and practice. To overcome this problem, some opinions are gathered form experts and field engineers and four improvements have been proposed and reflected in the system. First, the previous system consists of one hardware module, so it is hard to install it at a control office and construction equipment at the same time. The server module for the office and the mobile module for construction equipment are separately developed. Second, the transportation algorithm that is used in the previous system can generate shortest paths for the earthwork distribution, but embankment areas are not gathered. This situation leads to a decrease in compaction productivity. A modified algorithm for earthwork distribution is suggested. Third, the automated coordinate transformation is performed to show the position of construction equipment on the 3D terrain in real-time. Fourth, construction equipment groups should be formed in the initial stage of earthwork and the number of equipment of each groups should be changed by operation status and site environment. But this functions did not work properly in the previous system. This problem is corrected in the proposed system. The improvements can make the proposed system much more realistic one and can leads to an increase in the productivity of earthwork operations.

Anlysis of the Environmental Load Impact Factors for IPC Girder Bridge Using Principal Component Anlysis (주성분 분석을 활용한 IPC 거더교의 환경부하량 영향요인 분석)

  • Kim, Joon-Soo;Jeon, Jin-Gu;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2018
  • In the 21st century, the Earth has continued its efforts to reduce carbon emissions to overcome the crisis caused by climate change. The construction industry, which is a representative industry that produces large amounts of the environmental load during construction, should actively reduce the amount of the environmental load. From the planning stage of the construction facility, it is necessary to consider the environmental load such as route selection and structure type selection to reduce the environmental load. However, the environmental load can be estimated based on the input resource amount. However, in the planning stage, it is difficult to accurately calculate the environmental load due to lack of information on the construction amount. The purpose of this study is to select the environmental load factors for IPC girder bridges to be used in the environmental load estimation model in the planning stage. Specific information related to the environmental load was selected from a list of information available in the planning stage, reflecting the Life Cycle Assessment(LCA), correlation, principal components analysis and expert opinion. The list of selected planning stage information is 10 such as span length and bridge extension, and it is expected to be used as a basic data for the future development of environmental load estimation model.

Estimation of Soil Conversion Factor for the Non-compacted Soil in Embankment (비다짐 성토지반의 합리적 토량평가를 위한 토량환산계수 추정)

  • Oh, Sewook;Lee, Bongjik;Kim, Hongseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.11
    • /
    • pp.13-18
    • /
    • 2017
  • In a banking process for construction of a complex, non-compaction construction has been applied in most sites, which is a method that soils are compacted by the equipment load without being compacted separately. However, there are no specific descriptions in the construction manual or specifications, so it is unclear to evaluate the excavation volume. Hence, this study is a basic study to compare the soil conversion factor at a design stage and the actual soil conversion factor of a banking ground under a non-compaction condition in order to examine the feasibility in constructing the ground for construction of the complex and to examine appropriateness of the earth work in the site by conducting an indoor, field, and load-settlement test and proposing a reasonable soil conversion factor. Under the non-compaction condition, the soil conversion factor C is set to be 1.0 at the design stage, but the result of the field test was 0.86 which is smaller than the value at the design stage. It was expected that this result would increase the banking volume, and the construction result actually showed a difference in the banking volume. Therefore, for the baking ground under the non-compaction condition, it is necessary to apply the value C suitable for the site condition after performing test by considering the site's condition and the banking height.

Relationship between the Locations of Tunnel Entrance and Areas Affected by Deforestation in the Forest in Korea (산림관통 터널 입출구부 위치와 훼손 면적의 관계)

  • Kim, Dong-Pil;Hong, Suk-Hwan;Choi, Song-Hyun;Lee, Sang-Cheol;Ahn, Mi-Yeon
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.1
    • /
    • pp.104-111
    • /
    • 2017
  • The construction of road tunnels and bridges have delivered driving efficiency and stability based on developed engineering technology. Tunnels have the advantage of reducing the deforested area compared with other road construction methods. Since a tunnel is an underground passageway dug through the surrounding soil/earth/rock and enclosed except for the entrance and exit, commonly at each end, it does not cause a large amount of deforestation. This study surveyed the deforested areas at each end of the tunnel by the design of the tunnel entrance and exit and forest topography to minimize the amount of deforestation caused by road construction. A survey was done on a total of 150 tunnels (300 entrances and exits) on several main roads in Korea. The deforested area of each tunnel was collected by a breakdown of the entrance area and the upper area of the tunnel. According to the results of Kruskal-Wallis analysis, it was found that there was statistically a significant relation between the location of tunnels and the amount of deforestation by the topographical access type of the tunnels. The tunnel with 'facing orthogonal to incline' type access caused the smallest deforestation while the the tunnel with 'facing to valley' and 'parallel with incline' type accesses caused large deforestation during tunnel construction. Tunnel positioning in the light of topography can reduce the deforested area by up to 1.5ha at each tunnel.