• Title/Summary/Keyword: Earth construction

Search Result 1,220, Processing Time 0.026 seconds

Exploration of Teacher Pedagogical Content Knowledge (PCK) and Teacher Educator PCK Characteristics in Future School Science Education

  • Youngsun Kwak;Kyu-dohng Cho
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.331-341
    • /
    • 2023
  • The goal of this study was to examine the PCK required for science teachers and PCK required for university teacher educators in terms of school science knowledge, science teaching and learning, and the role of science educators, which are the main axes of science education in future schools, and to explore the relationship between them. This study is a follow-up to a previous stage of research that explored the prospects for changes in schools in the future (2040-2050) in terms of school knowledge, educational methods, and teacher roles. Based on in-depth interviews, qualitative and semantic network analyses were conducted to derive and compare the characteristics of PCK and PCK. As for the main research results, science teacher PCK in future schools should include expertise in organizing science classes centered on convergence topics, expertise in digital platforms and ICT use, and expertise in building a network of learning communities and resources, as part of the expertise of human teachers differentiated from AI. Teacher educators' PCK includes expertise in the research and development of T-L methods using AI, expertise in the knowledge construction process and practice, and expertise in developing preservice teachers' research competencies. Discussed in the conclusion is the change in teacher PCK and teacher educator PCK with changes in science knowledge, such as convergence-type knowledge and cognition-value integrated knowledge; and the need to emphasize values, attitudes, and ethical judgments for the coexistence of humans and non-humans as school science knowledge in the post-humanism future society.

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

Active Eanh Pressure Against Caisson Backfilled with Crushed Rock and Sand (II) : Verification and Application (사석과 모래로 뒷채움된 케이슨에 작용하는 주동토압 (II) : 검증과 적용)

  • Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2006
  • In the companion paper (Paik 2006), a new formulation for calculating the nonlinearly distributed active earth pressure acting on a caisson backfilled with crushed rock and sand is proposed, and it takes into account arching effects as well as difference in internal friction angles and unit weights between sand and crushed rock. In this study, in order to partially check the accuracy of the proposed equation, the results of the proposed equation are compared with the equation proposed by Paik (2003a) for caissons with rough surface and homogeneous backfill, and are compared with results of Rankine's theory for caissons with smooth surface and homogeneous backfill. In addition, a parametric study is performed to investigate the effect of $phi_{r}$, $phi_{s}$, $\delta_{r}$, $\gamma_{r}$, $\gamma_{s}$ and $\beta$ on the magnitude of active earth pressure acting on the caisson, and construction methods for minimizing active earth pressure on the caisson are also provided based on the results of a parametric study.

Characteristics of High School Students 'Conceptual Understanding about Minerals and Rocks (광물과 암석에 대한 고등학생들의 개념 이해의 특징)

  • Wee, Soo-Meen;Cho, Hyun-Jun;Kim, Jun-Suk;Kim, Yun-Ji
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.415-430
    • /
    • 2007
  • The purpose of this study was to investigate the characteristics of high school students' conceptual understanding about minerals and rocks. A questionnaire was developed to examine students' conceptions of minerals and rocks. The data were collected from 93 students in 10th and 119 students in 11th grades in a high school. The result showed that students' understanding of minerals and rock was on the moderate level. The 10th grade students showed a relatively lower level of understanding about igneous rocks while the degree of the 11th graders' understanding about certain concepts related with melting point in the rock domain was a little bit lower than the average. Although the understanding levels between the two grade levels were similar, there were some items for which students understanding seemed to be more sophisticated with the grade. In the questions about the characteristic of basalt surface, however, the frequencies of non-scientific conceptions were not decreased, rather increased along with the grade. It was also found that the conceptions students acquired from other science lessons as well as earth science classrooms did rather interfere with students' construction of the scientific concepts of minerals and rocks even though sometimes they were helpful for learning. It was suggested that the teachers should understand that some specific terms in earth science have different meanings as they were used in other subjects.

Level of Safety Awareness of Construction Workers (건설현장 작업자의 내면적 안전의식 수준)

  • Lee, Wang Gi;Park, Seong Yong;Son, Ki Sang
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.48-53
    • /
    • 2017
  • Many construction accidents can be lead to a death occurring at construction sites. These are considerably due to potentially-hazardous equipment and machine or unexpected collapsion at earth work due to land slide and so on. Almost 50% of the total death and injury, occurred in construction sites in 2015. 66% of those serious accidents are due to falling occurring from construction sites when they work. Therefore, causes and recommendations of each accident should be deeply thought and analysed The indirect causes are directly related to safe consciousness of the construction workers. Actually, their safety consciousness are not high, even very low, it is thought. Questionnaire survey sheets have been distributed to Seoul, Incheon, and Gyunggi-Do area, first. And then, the authors have collected those directly at sites, in order to increase collection rate of the sheets. The totally, collected sheets are 295 sheets. And, they are analysed using SPSS version 19 package program. Workers internal consciousness has been investigated and reviewed and analysed by statistical method such as frequency rate, crossed, and correlated analysis. And finally the conclusions for the above analyses are as follows; Heavy weight worth a crew of more than two workers should be necessarily considered for the advanced safety plan and needed for making a highly potential hazard group at construction sites. Safety consciousness, earing p.p.e, workman ship should be mainly considered for investing safety costs with an aspect of human factor.

A Review of Instrumentation System and Construction of Korea Highway Test Road (시험도로 건설과 계측시스템 구축)

  • 최준성;김도형;김성환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.603-606
    • /
    • 2000
  • The cost needed for the construction and management of highways in the whole nation is rapidly growing so the research that can decrease the cost is required. However, most of the highway specs have simply converted from those of other countries, including USA. Therefore, some of our design and construction specs were not the optimum ones based on our own situation, requiring a research under the actual traffic and environment of our nation. The use of test road develops many aspects of highway engineering. Those are evaluation of construction materials, a general overview of korea pavement design and serviceability under the actual traffic and environmental condition of the nation. It is also economical and efficient compared to the trial construction of each item in spreaded form. A test road, 7.7km long with two lanes, is being constructed on the Inner Central Expressway. In this test road, 2.7km is planned for asphalt pavement and 3.4km is planned for concrete pavement. Three test bridges and five earth retaining structures will be included in the test road. Based on the master plan, the major performance was progressing such as detailed research modules of each area, preliminary research for the future research, sensor surveys for the behavior analyses of pavements and structures with installation methods and data acquisition systems, the foundation research of Integrated Instrumentation System and the Management Plan for automated measurement. Some area(structure research division, geotechnical research division) was designed the instrumentation plan because some instrument sensors must be installed during the construction of the test road. And then the instrumentation plan of each area was enforcing because a large majority of the instrument sensors must be installed after the construction of the test road. The field surveys with material property tests and pilot instrumentation test with sensor tests was also performing in accordance with the construction in the field.

  • PDF

The Microtremor HVSRs in the SW Korean Peninsula I: Characteristics of the HVSR Peak Frequency and Amplification (한반도 남서부의 상시미동 HVSR 연구 I: 정점주파수와 증폭효과의 특성)

  • Jung, Hee-Ok;Kim, Hyoung-Jun;Jo, Bong-Gon;Park, Nam-Ryul
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.541-554
    • /
    • 2010
  • Fifteen min-microtremor data sets were collected at 136 sites from a coastal area of Kunsan and 117 sites from an inland area of Jeonju located in SW Korea, and were analyzed for the HVSR (Horizontal to Vertical Spectral Ratio) of the sites. The microtremor spectra of the coastal area have stronger energy in the lower frequency range from 1-6 Hz than those of the coastal area. This result can be attributed to the effect of the waves and tides in the Keum river and the Yellow sea. Twenty four hours of measurement of the microtremor indicated that the microtremor spectrum correlates with the human activities, but the microtremor HVSR peak was observed consistently at the characteristic frequency for the site. The HVSR peaks were grouped into 4 types -"single peak", "double peak", "broad peak" or "no peak"- based on their shapes. More than 90% of the data sets exhibit peak frequencies ($F_0$) which can be easily identified. The distribution of $F_0$ reveals a close relationship with the topography and local geology of the areas, exhibiting high F0s in the hillside areas and low $F_0s$ in the reclaimed land area. While the amplitudes of microtremor HVSR peak frequencies are less than 4 in the downstream of the inland area, those of the recently reclaimed land in the coastal area are extremely high (more than 10). The results of this study indicate that detailed HVSR studies are essential for the earthquake hazard reduction of reclaimed lands.

Distribution of Surface Sediments and Sedimentation Rates on the Tidal Flat of Muan Bay, Southwestern Coast, Korea (서해남부 무안만의 표층퇴적물의 분포와 조간대 퇴적률)

  • Ryu, Sang-Ock;Kim, Joo-Young;Chang, Jin-Ho
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.30-39
    • /
    • 2001
  • To consider the distribution of the surface sediments and sedimentary processes in tidal flat after the construction of sea-walls in the semiclosed Muan Bay, the southwest coast of Korea, studies on the sediments and sedimentation rates along two transect lines from February 1999 to March 2000 were carried out. The surface sediments in the bay are classified into 5 facies on the basis of textural parameters. The gravelly sediments including the cobbles and pebbles deposited in the bay-mouth are relic sediments which are formed in nearshore and fluvial environments at the low stand of sea level. In addition, it is considered that the muddy sediments widely distributed on the tidal flat might be originated from suspended matter transported from several rivers and/or offshore. Although the sedimentation rates on the tidal flat vary with season, their estimation rates are -8.9 mm/yr on Line-GR and -48.9 mm/yr on Line-YH, respectively. The erosion-dominated processes in the tidal flat would be caused by strengthened ebb tides due to the decrease of tidal choking at Mokpogu and the migration of tidal currents at the bay-mouth. The hydrodynamical changes mentioned above are interpreted to be occurred after/before the construction of sea-dike/sea-walls in coastal zone of Mokpo.

  • PDF

Real-scale Accelerated Testing to Evaluate Long-term Performance for Bridge/Earthwork Transition Structure Reinforced by Geosynthetics and Cement Treated Materials (토목섬유와 시멘트처리채움재로 보강한 교량/토공 접속구조의 장기공용성 평가를 위한 실물가속시험)

  • Lee, Il-Wha;Choi, Won-Il;Cho, Kook-Hwan;Lee, Kang-Myung;Min, Kyung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.251-259
    • /
    • 2014
  • The transition zone between an earthwork and a bridge effect to the vehicle's running stability because support stiffness of the roadbed is suddenly changed. The design criteria for the transition structure on ballast track were not particular in the past. However with the introduction of concrete track is introduced, it requires there is a higher performance level required because of maintenance and running stability. In this present paper, a transition structure reinforced with geosynthetics is suggested to improve the performance of existing bridge-earthwork transition structures. The suggested transition structure, in which there is reinforcing of the approach block using high-tension geosynthetics, has a structure similar to that of earth reinforced abutments. The utilized backfill materials are cement treated soil and gravel. These materials are used to reduce water intrusion into the approach block and to increase the recycling of surplus earth materials. An experiment was performed under the same conditions in order to allow a comparison of this new structure with the existing transition structure. Evaluation items are elastic displacement, cumulative settlement, and earth pressure. As for the results of the real-scale accelerated testing, the suggested transition structure has excellent performance for the reduction of earth pressure and settlement. Above all, it has high resistance the variation of the water content.

Estimation of Groundwater Flow Rate into Jikri Tunnel Using Groundwater Fluctuation Data and Modeling (지하수 변동자료와 모델링을 이용한 직리터널의 지하수 유출량 평가)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Nam-Hoon;Kim, Ki-Seok;Jeon, Hang-Tak
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.29-40
    • /
    • 2009
  • In general, understanding groundwater flow in fractured bedrock is critical during tunnel and underground cavern construction. In that case, borehole data may be useful to examine groundwater flow properties of the fractured bedrock from pre-excavation until completion stages, yet sufficient borehole data is not often available to acquire. This study evaluated groundwater discharge rate into Jikri tunnel in Gyeonggi province using hydraulic parameters, groundwater level data in the later stage of tunneling, national groundwater monitoring network data, and electrical resistivity survey data. Groundwater flow rate into the tunnel by means of analytical method was estimated $7.12-74.4\;m^3/day/m$ while the groundwater flow rate was determined as $64.8\;m^3/day/m$ by means of numerical modeling. The estimated values provided by the numerical modeling may be more logical than those of the analytical method because the numerical modeling could take into account spatial variation of hydraulic parameters that was not possible by using the analytical method. Transient modeling for a period of one year from the tunnel completion resulted in the recovery of pre-excavation groundwater level.