• Title/Summary/Keyword: Earth construction

Search Result 1,220, Processing Time 0.021 seconds

Rule-Inferring Strategies for Abductive Reasoning in the Process of Solving an Earth-Environmental Problem (지구환경적 문제 해결 과정에서 귀추적 추론을 위한 규칙 추리 전략들)

  • Oh, Phil-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.4
    • /
    • pp.546-558
    • /
    • 2006
  • The purpose of this study was to identify heuristically how abduction was used in a context of solving an earth-environmental problem. Thirty two groups of participants with different institutional backgrounds, i,e., inservice earth science teachers, preservice science teachers, and high school students, solved an open-ended earth-environmental problem and produced group texts in which their ways of solving the problem were written, The inferential processes in the texts were rearranged according to the syllogistic form of abduction and then analyzed iteratively so as to find thinking strategies used in the abductive reasoning. The result showed that abduction was employed in the process of solving the earth-environmental problem and that several thinking strategies were used for inferring rules from which abductive conclusions were drawn. The strategies found included data reconstruction, chained abduction, adapting novel information, model construction and manipulation, causal combination, elimination, case-based analogy, and existential strategy. It was suggested that abductive problems could be used to enhance students' thinking abilities and their understanding of the nature of earth science and earth-environmental problems.

Experimental Improvement of the Dropping Test for Evaluating the Appropriate Level of Water Content Ratio in Rammed Earth Method (흙다짐 건축재료의 적정함수비 현장확인을 위한 낙하시험 방법의 실험적 개선)

  • Lee, Jong-Kook
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • Although the interest for earth architecture has been expanded and settled as a part of modern architecture, precisely calculating the ratio of water content in practice is still difficult and the calculation is based on empirical analysis yet. This causes many problems in durability and maintenance of earthen architecture. Therefore, this study investigated to find the easiest way to correctly calculate the appropriate level of water content ratio (AWCR), which can be used in practice. Until now, the workers have checked the AWCR based on their own experience with popular but vague manuals. On this awareness, we studied the several testing methods and found the dropping test which uses the pattern of shape after the sample is dropped. In this point, we studied and developed the definite testing method in terms of process, and shape discrimination. Also we suggest the test recording sheet by using the cobalt chloride($CoCl_2$) whose color is instantly changed when contacts with the moisture. It is believed that this result can help improving the quality and durability of the earthen architecture using the rammed earth method and the efficiency in practice.

Experimental studies on the aerodynamic performance of two box girders with side openings

  • Wang, Jiaqi;Yagi, Tomomi;Ushioda, Jun;Noguchi, Kyohei;Nagamoto, Naoki;Uchibori, Hiroyuki
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.119-131
    • /
    • 2020
  • A butterfly web girder is a box-shaped girder with discretely distributed side openings along the spanwise direction. Until now, there have been few studies related to the aerodynamic performance of the butterfly web bridge. The objective of the current study was to clarify the effects of the side openings on the aerodynamic performance of the girder. Two butterfly web girders with side ratios B/D = 3.24 and 5, where B is the girder width and D is the depth, were examined through a series of wind tunnel tests. A comparison of the results for butterfly web girders and conventional box girders of the same shape confirmed that the side openings stabilized the vortex-induced vibration and galloping when B/D = 3.24, whereas the vortex-induced vibration and torsional flutter were stabilized when B/D = 5. The change in the flow field due to the side openings contributed to the stabilization against the vibration. These findings not only confirmed the good aerodynamic performance of the butterfly web bridge but also provided a new method to stabilize the box girder against aerodynamic instabilities via discretely distributed side openings.

Assessment of Displacement and Axial Force of Earth Retaining Wall at Each Excavation Step Using Direct Algorithm Back Analysis (직접알고리즘 역해석 기법을 이용한 굴착단계별 흙막이 가시설 변위 및 축력의 적정성 평가)

  • So-Ra Kang;Je-Seok Jeon;Yeong-Jin Lee;Jun-Seok Lee;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.27-37
    • /
    • 2024
  • In this study, direct algorithm-based back analysis was utilized to perform back analysis on two actual earth retaining wall fields, which was then compared with genetic algorithm-based method to evaluate the suitability of the back analysis. Additionally, in order to propose effective utilization methods of the program, the measurement data, as the input for the back analysis, was varied for each excavation step, and the applicability of the back analysis results(displacement, axial force) was examined. The research findings indicate that both direct algorithm and genetic algorithm show high applicability; however, the optimization for this program is better predicted by the direct algorithm. Moreover, in order to effectively use the back analysis program employing the direct algorithm, it was evaluated that relatively accurate prediction of the earth retaining wall behavior could be achieved by inputting measurement data from the 7th excavation step for fields with final excavation steps ranging from 8 to 11.

Characteristics of Developed Earth Pressure by Backfill Compaction (뒷채움 시공시의 다짐토압 특성)

  • 노한성
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.163-171
    • /
    • 2001
  • It is important to pay careful attention to the backfill construction for the structural integrity of concrete box culvert. To increase the structural integrity of culvert good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials. However structural distress of the culvert could be occurred due to the excessive earth pressure by great dynamic compaction load. In this study, two box culverts were constructed with change compaction materials and construction methods. Two type of on-site soils such as subbase and subgrade materials were used as backfill materials. In most case, dynamic compaction rollers with 11 to 12 ton weights were used and vibration frequency were applied from 2000 to 2500 rpm for the great compaction energy. Backfill compactions with good quality soils were carried out to examine the effect of cushions on dynamic lateral soil pressure. Expanded polystyrene (EPS) and rubber of tire were adapted as cushion materials and they are set on the culverts before backfill construction. This paper presents the main results on the characteristics of dynamic earth pressures. Test result indicates that the amounts of increased dynamic pressures are affected with backfill materials, depth of pressure cell, and compaction condition. The earth pressure during compaction can give harmful effect to box culvert because the value of dynamic earth pressure coefficient $(\DeltaK_{dyn}=\DeltaK\sigma_h\DeltaK\sigma_v)$ during compaction is greater than that of static condition. It was observed that cushion panels of EPS(t=10cm) and rubber(t=5cm) are effective to mitigate dynamic lateral pressure on the culverts.

  • PDF

Behavior Characteristics of Underground Flexible Pipe Backfilled with Lightweight Foamed Soil (경량기포혼합토로 뒷채움된 연성매설관의 거동특성)

  • Lee, Yong-Jae;Yea, Geu-Guwen;Park, Sang-Won;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • Lightweight Foamed Soil (LWFS) is a useful material for underground pipe backfill because of reusability of excavated soil and no compaction effect. In this research, a pilot test is carried out and monitoring results are analyzed to investigate behaviors of a flexible pipe, when LWFS is applied as a backfill material. Simultaneously, they are compared with another test case which is backfilled with Saemangeum dredged soil. As a result, the vertical earth pressure of the case backfilled with LWFS slurry presents that decreases as much as 25.6% in comparison with dredged soil and it is only within 10% after solidification. In case backfilled with dredged soil, the horizontal earth pressure is more than 3.6 times of the case used by LWFS and the vertical and horizontal deformation is more than 3.2 and 2.6 times of the case, respectively. It presents excellent effects on earth pressure and deformation reduction of LWFS. The stresses measured at the upper side of the pipe generally present compressive aspects in case backfilled with dredged soil. However, they present tensile aspects in case of LWFS. It is because of negative moment occurred at the center of the pipe due to the buoyancy from LWFS slurry. Conclusively, LWFS using Saemangeum dredged soil is very excellent material to use near the area in comparison with the dredged soil. However, the countermeasure to prevent the buoyancy is required.

A Case Study on the Hybrid Reinforcement Retaining Wall System Reinforced by Soil Nail and Steel Strip (쏘일네일과 강재스트립으로 보강된 복합보강토옹벽 시스템의 사례연구)

  • Chun, Byung-Sik;Kim, Hong-Taek;Cho, Hyun-Soo;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.5-12
    • /
    • 2008
  • The reinforced earth wall, which is able to improve the strength of soil highly, is required in case of supporting high surcharge load such as high speed rail way, high embankment road, and massive reinforced earth wall in a mountainous area. And also, it is continuously required that the method is able to minimize the amount of excavated soil on account of environmental issue, boundary of land, etc., on excavation site. However, because the required length of reinforcement should be $60{\sim}80%$ of the height of reinforced earth wall for general reinforced earth wall, in fact the reinforced earth wall is hardly applied on the site of cut slope. In this paper we studied the design and construction cases of hybrid reinforcement retaining wall system combined with steel strips and soil nails, connecting the reinforced earth wall reinforcements to the slope stability reinforcements (soil nails) to ensure sufficient resistance by means of reducing the length of reinforcements of reinforced earth wall. And the feasibility of hybrid reinforcement retaining wall system, suggested by real data measured on site, is also discussed.

Variation of Earth Pressure Acting on Cut-and-Cover Tunnel Lining with Settlement of Backfill (되메움토의 침하에 따른 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista F.E.;Park Lee-Keun;Im Jong-Chul;Lee Young-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.27-40
    • /
    • 2006
  • Damage of cut-and-cover tunnel lining can be attributed to physical and mechanical factors. Physical factors include material property, reinforcement corrosion, etc. while mechanical factors include underground water pressure, vehicle loads, etc. This study is limited to the modeling of rigid circular cut and cover tunnel constructed at a depth of $1.0{\sim}1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. In this study, only damages due to mechanical factors in the form of additional loads were considered. Among the different types of additional, excessive earth pressure acting on the cut-and-cover tunnel lining is considered as one of the major factors that induce deformation and damage of tunnels after the construction is completed. Excessive earth pressure may be attributed to insufficient compaction, consolidation due to self-weight of backfill soil, precipitation and vibration caused by traffic. Laboratory tunnel model tests were performed in order to determine the earth pressure acting on the tunnel lining and to investigate the applicability of existing earth pressure formulas. Based on the difference in the monitored and computed earth pressure, a factor of safety was recommended. Soil deformation mechanism around the tunnel was also presented using the picture analysis method.

A Study on the Evaluation of Field Installation Damage and Strength Reduction Factor of Geogrid for Reinforced Retaining Wall (보강토 옹벽용 지오그리드의 현장 내시공성 및 강도 감소계수 평가에 관한 연구)

  • Park, Juhwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.5-12
    • /
    • 2012
  • Recently the installation of reinforced earth retaining walls in the domestic construction site has increased, surpassing conventional RC walls. These reinforced walls have various types depending on the reinforcing material, installation method and the form of face panel. However, there are difficulties in design and construction management due to the unproved safety of construction method. In case of reinforcing materials, despite the fact that they come in all different sizes and types produced by small businesses or partially imported with cheap price and low quality, no proper standards for designing the walls have been suggested. In order to apply reinforced retaining wall system to broad cases and design the walls effectively considering site conditions, specific design and construction guidelines for efficient construction management are needed. In conclusion, this study verified that reduction factors can be greatly affected by grain sizes and stiffness of backfill materials and granularity range, therefore in case of relatively large construction site, it is required to redesign the reinforced retaining wall by evaluating site installation resistance test, applying respective reduction factors to each backfill material and select the right geogrid depending on the usage of retaining wall so as to enhance the safety of reinforced earth retaining walls with efficiency.

A Study on the Change of Work and Improvement in the Private Forest Road of Chungcheongnam Province (충청남도 민유임도에 적용된 공종의 변화 및 개선방안에 관한 연구)

  • Lee, Joon Woo;Kim, Ju Baek;Choi, Yeon Ho;Kim, Myeong Jun;Park, Bum Jin;Park, Jong-Min
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • In my study, I analysed and criticised the change of applied works based on a design drawing of a private forest road in Chungchengnam province from 1990 to 2003. The aim of this study is to obtain the fundamental resources for establishment the green forest road which is environment friendly. Working expenses of forest road was gradually increased by a business year. In particular, the working expenses dramatically increased in 1999-2000. In change rate of cost of construction by works, earth work rate of the cost of constructions was declined: from 25.4% in 1990-1999, to 18.5% in 2000-2003. However, the total cost of the construction of slope protection work and structural work increased. Nevertheless the rate of the cost of constructions are not increased where as the earth work rate of the cost of constructions were reduced. The rate of the price construction materials and the cost of construction was the main causes which was led by the extension of the standard requirement of applied work and the increase of the materials of applied work. In other word, materials of structural work and slope protection work increased. If the increase of the cost of construction has seem through the increase of contractual materials and extension of the standard requirement would led to weak competitiveness of forest road. Therefore, diverse method of constructions need to apply and a new method should be developed.

  • PDF