• Title/Summary/Keyword: Earth Science curriculum

Search Result 403, Processing Time 0.029 seconds

Development and Application of Creative Education Learning Program Using Creative Thinking Methods (창의적 사고기법을 활용한 창의교육 수업프로그램 개발 및 적용)

  • Han, Shin;Kim, Hyoungbum;Lee, Chang-Hwan
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.2
    • /
    • pp.162-174
    • /
    • 2020
  • This study aimed to develop a creative education class program using metaphor, one of the creative thinking techniques, and to examine the effectiveness of the program targeting for randomly sampled 338 students in six middle schools. The creative education class program with the metaphor was developed based on content elements concerning 'astronomy' in 2015 science curriculum revision in South Korea. The program was tested for validity after being modified and supplemented three times by forming a group of experts, and the final version of the program was applied to school education fields during four periods, including block time. To find out the effectiveness of the program and the implementation, creative education class satisfaction test and creative thinking process test were conducted. That is to say, the creative education class satisfaction test was conducted before treatment and the creative thinking process test was implemented both before and after treatment. The results of the study are as follows. First, in this study, the program was developed with the emphasis on students voluntarily and actively participating in creative education programs while utilizing creative thinking methods. Second, the statistical results of the pre- and post-class about the creative education program using the metaphor of creative thinking techniques represented significant results(p<.05). In other words, the two-dependent samples by students' pre-and post-score about the creative education class showed significant statistical test results (p<.05). It turned out that the creative education program using metaphor has had a positive impact on research participants. Third, in regards to the results of the creative education class satisfaction test, 101 out of 338 students(30%) answered 'Strongly Agree' and 137(41%) answered 'Agree', indicating the subjects' satisfaction with the class was high in general. On the other hand, concerning difficulties of the creative class, 137(41%) answered "Lack of time" as the main factor, followed by 98(30%) "Difficulties of problems they were required to solve", 73(22%) answered "Conflicts with friends", and 24(7%) said "Difficulties of contents." These responses were taken into account as considerations for further development of creative education programs.

Analysis of Oceanic Current Maps of the East Sea in the Secondary School Science Textbooks (중등 과학 교과서의 동해 해류도 분석)

  • Park, Kyung-Ae;Park, Ji-Eun;Seo, Kang-Sun;Choi, Byoung-Ju;Byun, Do-Seong
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.832-859
    • /
    • 2011
  • The importance of scientific education on accurate oceanic currents and circulation has been increasingly addressed because the currents have played a significant role in climate change and global energy balance. The objectives of this study are to analyze errors of the oceanic current maps in the textbooks, to discuss a variety of error sources, to suggest how to produce a unified oceanic current map of the East Sea for the students. Twenty-seven textbooks based on the 7th National Curriculum were analyzed and quantitatively investigated on the characteristics of the current maps by comparing with both the previous literature and up-to-date scientific knowledge. All the maps in the textbooks with different mappings were converted to digitalized image data with Mercator mapping using geolocation information. Detailed analysis were performed to investigate the patterns of the Tsushima Warm Current (TWC) in the Korea Strait, to examine how closely the nearshore branch of the TWC flows along the Japanese coast, to scrutinize the features of the offshore branch of the TWC south of the subpolar front in the East Sea, to quantitatively investigate the northern range of the northward-propagating East Korea Warm Current and its latitude turning to the east, and lastly to examine the outflow of the TWC near the Tsugaru Strait and the Soya Strait. In addition, the origins, southern limits, and distances from the coast of the Liman Current and the North Korea Cold Current were analyzed. Other erroneous expressions of the currents in the textbooks were presented. These analyses revealed the problems in the present current maps of the textbooks, which might lead the students to misconception. This study also addressed a necessity in a bridge between scientists with up-to-date scientific results and educators who needed educational materials.

Science Teachers' Diagnoses of Cooperative Learning in the Field (과학교사들이 진단한 과학과 협동학습의 실태)

  • Kwak, Young-Sun
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.360-376
    • /
    • 2001
  • This qualitative research investigated in-service science teachers' perceptions about cooperative learning and their perceived barriers in implementing cooperative learning in their classrooms. The underlying premise for cooperative learning is founded in constructivist epistemology. Cooperative learning (CL) is presented as an alternative frame to the current educational system which emphasizes content memorization and individual student performance through competition. An in-depth interview was conducted with 18 in-service science teachers who enrolled in the first-class teacher certification program during 2001 summer vacation. These secondary school teachers's interview data were analyzed and categorized into three areas: teachers' definition of cooperative learning, issues with implementing cooperative learning in classrooms, and teachers' and students' responses towards cooperative learning. Each of these areas are further subdivided into 10 themes: teachers' perceived meaning of cooperative learning, the importance of talk in learning, when to use cooperative learning, how to end a cooperative class, how to group students for cooperative learning, obstacles to implementing cooperative learning, students' reactions to cooperative learning, teachers' reasons for choosing (not choosing) student-centered approaches to learning/teaching, characteristics of teachers who use cooperative learning methods, and teachers' reasons for resisting cooperative learning. Detailed descriptions of the teachers' responses and discussion on each category are provided. For the development and implementation of CL in more classrooms, there should be changes and supports in the following five areas: (1) teachers have to examine their pedagogical beliefs toward constructivist perspectives, (2) teacher (re)education programs have to provide teachers with cooperative learning opportunities in methods courses, (3) students' understanding of their changed roles (4) supports in light of curriculum materials and instructional resources, (5) supports in terms of facilities and administrators. It's important to remember that cooperative learning is not a panacea for all instructional problems. It's only one way of teaching and learning, useful for specific kinds of teaching goals and especially relevant for classrooms with a wide mix of student academic skills. Suggestions for further research are also provided.

  • PDF

The Analysis of Scientific Attitude in the Government-designated and Authorized Teacher's Guides of Elementary School Science for the 3rd~4th Grades (초등 3~4학년군 국정 및 검정 과학 교사용지도서의 과학적 태도 분석: '지구와 우주' 영역을 중심으로)

  • Jang, Myoung-Duk
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.2
    • /
    • pp.192-212
    • /
    • 2022
  • The purpose of this study is to analyze scientific attitude and its components in the general remarks and in the particulars of one government-designated and seven authorized elementary school science teacher's guides for the 3rd~4th grades which were developed according to the 2015 national science curriculum, and to derive implications for future development of teacher's guide. The results of the study are as follows: First, in their general remarks, five of eight teacher's guides (62.5%) give a very brief explanation on the components of scientific attitude, and the remaining three teacher's guides give a relatively detailed explanation on the components but they lack practical information on teaching and assessing of the components; Second, in the case of unit objective in the four units of the area of 'Earth and Universe', five of eight teacher's guides (62.5%) contain 3~4 components among 'curiosity', 'cooperation', 'objectivity', 'critical mindedness', or 'respect for evidence', and one of the remaining three teacher's guides contains only the component of 'curiosity', another guide doesn't have any component, and the other guide doesn't have unit objective itself; Third, in the case of unit assessment, only one of eight teacher's guide (12.5%) has independent unit assessment, includes several components of scientific attitude in the unit assessment, and is broadly consistent between the components of scientific attitude in unit objective and in unit assessment; Fourth, in case of lesson objective, three teacher's guide (37.5%) contain 3~4 components among 'curiosity', 'cooperation', 'objectivity' and 'critical mindedness', and the remaining five teacher's guide (62.5%) include only 'curiosity'; Fifth, in the case of lesson assessment, among eight teacher's guides, five (62.5%) evaluate 3~4 components of scientific attitudes, two (25.0%) evaluate only 'curiosity' and 'cooperation', and one (12.5%) does not evaluate anything.

An Analysis of the Definition and the Meaning Used for the Terms of Heat and Thermal Energy in the Science Textbooks (과학과 교과서에 나타난 열과 열에너지 용어의 정의 및 사용 의미 분석)

  • Kim, Serim;Park, Jong-Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.214-225
    • /
    • 2018
  • In this study, we tried to find out how heat and thermal energy terms are defined and used in Korean science textbooks, and to see if there are any differences in the meaning of these terms used in different areas of science. For this purpose, the contents of 52 science textbooks of elementary, middle and high school published by the 2009 revised curriculum were analyzed. The definition of the term heat is given in the middle school Science(1) and the high school Physics I and II textbooks. Most textbooks define heat as "energy transferred due to a temperature difference (Type I)". Only one textbook of Physics I defines heat as "transfer of energy due to a temperature difference (Type II)". The definition of thermal energy is mostly presented in the middle school Science (2) and the high school Physics I textbooks. Physics I textbooks define the thermal energy as "molecular kinetic energy (Type III)", while Science(2) textbooks define it as Type I or "energy causes temperature change or phase transition of matter (Type IV)". In the texts of textbooks, heat is mainly used as the meaning of Type I or Type III. Thermal energy is mainly used as Type III, but it is also used as Type I in the high school Physics and Chemistry textbooks. The meanings of heat and thermal energy terms used are differed by the area of science. They are mainly used as type I or type III in Physics and Chemistry textbooks, and used as type III in Life Science and Earth Science textbooks.

A Study on the Students' Cognition of Chemistry in Science High School by Factor Analysis of Mathematics and Science Achievement (수학·과학 성취도의 요인 분석으로 본 과학고등학교 학생들의 화학 교과에 대한 인식 연구)

  • Shin, Dong-Seon;Choi, Hojun;Kim, Bong Gon
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.2
    • /
    • pp.119-129
    • /
    • 2020
  • For effective teaching-learning activities for students with diverse talents in science high schools, it is important for teachers to understand students' individual differences in perceiving and processing information in the natural world, depending on the students' various talents and subject characteristics. The purpose of this study is to examine the students' cognition of chemistry in science high school through correlations and factor analysis of mathematics/science achievement. In addition, this study attempted to examine the cognition of chemistry subject according to R&E classes. The main participants of the study were freshmen of G science high school (296 students) who entered after three times of curriculum reforms and new admission processes and the students in two other science high schools in Gyeongnam and Ulsan were included. The correlation and factor analysis were conducted by exploratory factor analysis by IBM SPSS Statistics 25 programs. The results of this study were as follows: First, in the correlation analysis between mathematics and science achievement, it was confirmed that the Pearson's coefficient of chemistry showed higher positive correlation coefficient than that of other science subjects. Second, in the factor analysis of mathematics and science achievements, it was found that the factor indicators were divided into two factors as logical-mathematical (mathematics and physics) and naturalistic (life science and earth science). Third, in the factor analysis, it was confirmed that the chemistry is recognized as the subject that requires both logical-mathematical and naturalistic intelligence. Finally, it was confirmed that students' cognitions of chemistry subject were found to differ according to the R&E classes. In other words, the participants of R&E chemistry class, unlike other students, were found to recognize chemistry as the subject that logical-mathematical intelligence is needed.

The Effects of the Number, Ratio of Advanced Courses, and Variety in Science Elective Subjects on the Growth of High School Science Course Students' Attitude Towards Science (고등학교에서 과학 선택 과목의 수, 심화(II) 과목 비율, 교과 다양성이 이과 학생의 과학에 대한 태도 성장에 미치는 효과)

  • Lee, Gyeong-Geon;Hong, Hun-Gi
    • Journal of Science Education
    • /
    • v.46 no.1
    • /
    • pp.80-92
    • /
    • 2022
  • We fitted latent growth models of attitude towards science using the Korea Education & Employment Panel 2004-2007 data with 343 high school students. The growth model show better fit indices compared to the no growth model. The intercept and slope showed significant variances, and thus, we added control variables of the number, ratio of advanced courses, and variety in science elective subjects, and the achievement percentile for middle school. In the conditional growth model, the previous achievement has significant positive effects on the intercept and the ratio of the advanced courses and variety of science subjects show significantly positive effects on the slope. Based on the results, it supports the 2022 Revised Science Curricular that high school credit system should provide students with basic 'Physics,' 'Chemistry,' 'Biology,' and 'Earth Science,' credits in 'general electives', various integrated subjects in 'converged electives', and highly advanced subjects in 'career electives.'

A Study on the Development of Career Education Program for Science Subjects Using Local Resources (지역자원을 활용한 과학교과 연계 진로교육 프로그램 개발 연구)

  • Byoung-Chan Moon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.2
    • /
    • pp.210-223
    • /
    • 2023
  • This study developed elementary and middle school career education programs linked to science subjects and local natural resources, and explored learning effects and implications for developing and operating career programs. In order to achieve the research purpose, a 10-hour career education program using local natural and social resources was developed and applied to 25 elementary and middle school students in rural areas. As a result of the study, most of the elementary and middle school students who participated in this study were not well aware of the natural and social resource value of the area where they lived. Therefore, when developing and operating a regional-based career education program for elementary and middle school students in rural areas, it is necessary to operate a separate teaching/learning activity time so that students can fully know the natural and social information and resource values of the region. In addition, in order to enhance students' participation and interest in career education programs, it is necessary to organize the operation of the program in groups, not individuals, and to guide students in detail by dividing the program's performance process into several sub-steps. Finally, the core material of regional-linked career education-related programs focused more on their own content, that is, agricultural products grown by parents, and future job settings were higher in start-ups that directly operate companies such as travel agencies and manufacturing companies. Given the recent emphasis on career education in the curriculum, it is suggested that local students should pay more attention to finding materials with local resource value in the field of geoscience, which is closely related to natural resources, and developing and operating them as career education programs linked to local resources.

Development of a Test of Science Inquiry Skills for Elementary School Fifth and Sixth Graders (초등학교 고학년 학생의 과학 탐구능력 측정을 위한 평가 도구 개발)

  • Song, Kyoung-Hye;Lee, Hang-Ro;Lim, Cheong-Hwan
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.6
    • /
    • pp.1245-1255
    • /
    • 2004
  • The purpose of this study is to develop a valid and reliable evaluating instrument for elementary school fifth and sixth graders. The instrument is developed through R&D procedure, which includes two checks of science specialist and two field trials of the instrument. Evaluating items are content-free for each science inquiry skill. Each science inquiry element is based on SAPA and the 7th curriculum. This study has selected 10 science inquiry skills(observing, classifying, measuring, predicting, inferring, recognizing of a problem, controlling variables, interpreting data, drawing a conclusion, designing an experiment), formulated a clear definition of the elements of science inquiry skills, and established the objectives of evaluation. The content areas are divided into three categories, material and energy, life and environment, and the earth and circulation. Each category contains 10 items. So the instrument consists of 30 items. The content validity of items, objectivity of the scoring keys, and clarity of the items has been checked twice by specialists in science education. At the same time, two field trials were performed to produce the reliability of the instruments, discrimination index, and item difficulty index. The instrument has the content validity is 91.6%, reliability 0.79, objectivity 93.3%, discrimination index 0.30, and item difficulty index 66.1%.

Development and Suggestion of Integrated Collaboration System to Revitalize Community-Based National Science Museums (지역사회 기반 전국과학관 활성화를 위한 통합이용제도 개발 및 제언)

  • Park, Young Shin;Mun, Kingju;Hwang, Yohan
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.3
    • /
    • pp.274-290
    • /
    • 2019
  • In order for the science museum to play a role as a foundation for strengthening the national creative capability, which is the core of the advanced national development paradigm, it is important to gather the capacities of the nation's science museums and establish a platform to cooperate in a shared value system. Science museum is an independent operating system, and there is a lack of strong connections among national, public and private science museums. The existing integrated collaboration system of science museums-centered can be studied first and promoted to develop programs for the free school year according to a specific topic. The same system of science museum-inclusion which link local cultural institutions or cultural places as science culture program were also studied to do the same purpose. On the basis of problems drawn from studies of integrated collaboration systems of each participating science museum, we proposed a convergence integrated collaboration systems of science museum-centered and science museum-inclusion. To this end, data were collected from practitioners of 7 representing science museums including 5 national ones. In order to suggest improvements, we also contacted five international science museums to collect the exemplary cases. Considering the regional characteristics, science museum-inclusion integrated collaboration systems considering the cultural characteristics and the science museum-centered integrated collaboration systems for free school semesters, were developed and tried by practitioners who participated in this research. It was found that integrated collaboration system can be more activated for the community. This suggests that support from the national level or at the level of regional autonomy is essential and the connection with the curriculum is necessary for the integrated collaboration system program. Finally, professional experts such as program development or commentator can be a decisive role.