• Title/Summary/Keyword: Earth Retaining

Search Result 458, Processing Time 0.025 seconds

Study on the Development of Reinforced Earth Retaining Wall (보강옹벽개발연구)

  • 유용환
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.51-66
    • /
    • 1986
  • The design of fabric reinforced retaining wall structure was discussed in this article. It was confirmed that the reinforced retaining earth wall which was designed by new theoretical formulae developed this time was stable structurally and economically. The plastic fabric filter which was placed in layers behind the facing element reduced the lateral earth pressure on the wall elements in comparison with a conventional retaining earth walls. The reinforcing characteristics of earth wall was governed by the spacing of fabric layers, effective length of fabrics, particle distribution and compaction, and thus it is essential that, in the construction field, the reinforcing strips should be selected in order to develop the maximum friction forces bet.eon soil and fabric filters. The maximum tensile stress developed from the reinforcing strips was appeared at a little far distance from the back of skin element and it was not well agreed with the Rankine's theory but distributed well as a symmetrical shape against the point of the maximum tensile stress. The total length of the different layers should be sufficient so that the tension in the fabric strip could be transferred to the backfill material. Also the total stability of reinforced earth wall should be checked with respect to a failure surface which extended blond the different lathers.

  • PDF

A Discussion on the Improvement of Pseudo-Static Seismic Design Criteria of Retaining Wall in Domestic (국내 옹벽의 유사정적 내진설계기준 개선방향에 대한 고찰)

  • Jo, Seong-Bae;Ha, Jeong Gon;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2015
  • This paper reviews the current seismic design code and research for dynamic earth pressure on retaining structures. Domestic design codes do not clearly define the estimation of dynamic earth pressure and give different comments for seismic coefficient, wall inertia and distribution of dynamic earth pressure using Mononobe-Okabe method. AASHTO has been revised reflecting current research and aims for effective seismic design. Various design codes are analyzed to compare their performance and economic efficiency. The results are used to make improvement of current domestic seismic design code. Further, it is concluded that the experimental investigation is also needed to verify and improve domestic seismic code for dynamic earth pressure.

Estimation of 3D active earth pressure under nonlinear strength condition

  • Zhang, D.B.;Jiang, Y.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.515-525
    • /
    • 2019
  • The calculation of active earth pressure behind retaining wall is a typical three-dimensional (3D) problem with spatial effects. With the help of limit analysis, this paper firstly deduces the internal energy dissipation power equations and various external forces power equations of the 3D retaining wall under the nonlinear strength condition, such as to establish the work-energy balance equation. The pseudo-static method is used to consider the effect of earthquake on active earth pressure in horizontal state. The failure mode is a 3D curvilinear cone failure mechanism. For the different width of the retaining wall, the plane strain block is inserted in the symmetric plane. By optimizing all parameters, the maximum value of active earth pressure is calculated. In order to verify the validity of the new expressions obtained by the paper, the solutions are compared with previously published solutions. Agreement shows that the new expressions are effective. The results of different parameters are given in the forms of figures to analysis the influence caused by nonlinear strength parameters.

Application of Earth Retaining Structure using Soil Cement-mixing Method (교반혼합체 공법의 도심지 흙막이벽 적용)

  • Kim, Young-Seok;Cho, Yong-Sang;Kamg, In-Cheol;Kim, In-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.883-887
    • /
    • 2009
  • In this study, a new soil retaining system was proposed by soil cement mixing method. The new soil retaining system is based on deep cement mixing method by large diameter reinforcing blocks (piles). Large diameter reinforcing blocks (usually $\varnothing$300-500 mm) have the advantage to make reinforcements over a relatively short depth and thus reduce the amount of reinforcement necessary. A field case has been reviewed for actual application of the soil retaining system at a downtown site. Research was conducted to evaluate the behavior of the installed soil retaining wall, with reinforcing blocks (400 mm in diameter and 4 m in length) placed into a 10 m excavation wall at a $20^{\circ}$ angle. As a result, the potential for applying this method to the downtown excavation site was confirmed.

  • PDF

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

A study on horizontal stress of retaining walls caused by train loading (열차하중 작용 시 연직토류벽에 발생하는 수평응력 고찰)

  • Kim, Dae-Sang;Kim, Hyung-Geun;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.964-972
    • /
    • 2008
  • In the retaining wall design process, track and train loads are usually considered as uniform surcharge loads and strip loads. In this paper, the lateral(horizontal) earth pressure on retaining structures caused by track and train load are calculated using the Boussinesq solution. And also total horizontal force per unit length and the location of the resultant force were estimated with the changes of loading locations and widths of the loadings. The maximum horizontal earth pressure and the location of it for high-speed train load were 11.83kPa and 1.7m at the loading condition 2m away from retaining walls.

  • PDF

Experimental Study on the application of reinforced retaining walls to the railroad (보강토 옹벽의 철도 구조물 적용에 관한 실험적 연구)

  • Kim Yong-Jun;Kim Jun-Young;Kim Kyung-Taek;Yeom Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1020-1025
    • /
    • 2004
  • This research reviews the characteristics of earth pressure incurred by GRS-RW mainly used in the railroad design in order to resist large lateral load caused by train and additional load induced by facilities such as noise barrier fences, electric poles, etc. The results of test shows the existence of arching effect that horizontal earth pressure increases in the backfill while earth pressure applying to the wall reduced under GRS-RW system. In both cases, unreinforced wall and GRS-RW system, the coefficient of earth pressure (K) is about 0.4 at the rest. However, after lateral displacement occurs, the earth pressure nearly reduce down to zero under GRS-RW system while the earth pressure decreases up to 0.12 in case of unreinforced retaining wall.

  • PDF

Analysis of influence factors on the seismic earth pressure acting on gravity walls (중력식 옹벽에 작용하는 배면 동적 토력의 영향 인자 분석)

  • 윤석재;김성렬;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.75-82
    • /
    • 2002
  • The Mononobe-Okabe method is generally used to evaluate the dynamic earth force for the seismic design of retaining walls. However, the Mononobe-Okabe method does not consider the effects of the dynamic interactions between the backfill soil and the wall. In fact, a phase difference exists between the inertia force and the seismic earth pressure. In this study, shaking table tests were peformed on gravity walls retaining dry backfill sand to analyze the influence of several parameters (the unit weight of the wall, the input acceleration and base friction) on the development of the seismic earth pressure. The experiments revealed that the magnitude of the inertia force mobilized during seismic loading affected the seismic earth pressure. The difference in the phase angles between the inertia force and the seismic earth pressure was retained at 180 degrees before the wall failed but its magnitude changed significantly as the wall began to fail.

  • PDF

Retaining Wall System Using the Compressible Inclusion Function of EPS (EPS의 압축성을 이용한 콘크리트 옹벽 시스템 연구)

  • 김진만;김호비;조삼덕;주태성;최봉혁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.411-418
    • /
    • 2001
  • The last 30 years have been significant worldwide growth in the use of EPS as a lightweight fill material. This paper analyzes the compressible inclusion function of EPS which can results in reduction of static earth pressure by accomodating the movement of retained soil. A series of model tests was conducted to evaluate the reduction of static earth pressure using EPS inclusion and determine the optimum stiffness of EPS, Also, field test was conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on field test it is found that the magnitude of static earth pressure was reduced about 20% compared with theoretical active earth pressure.

  • PDF

Sequential Analysis of Earth Retaining Structures Using p-y Curves for Subgrade Reaction

  • Kim, Hwang;Cha
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.149-164
    • /
    • 1996
  • The sequential behavior of earth retaining structure is investigated by using soil springs in elasto -plastic soil. Mathematical model that can be used to construct the p-y curves for subgrade modulus is proposed by using piecewise linear function. The excavation sequence of retaining wall is analyzed by the beam -column method. Reliability on the developed computer program is verfied through the comparison between the prediction and the in -situ measuidments. It is concluded that the proposed method simulates well the construction sequence and thus represents a significant improvement in the prediction of deflections of anchored wall excavation. Based on the results the proposed method can be effectively used for the evaluation of the relative importance of the parameters employed in a sensitivity analysis.

  • PDF