• Title/Summary/Keyword: Earth Remote Sensing

Search Result 899, Processing Time 0.021 seconds

A Basic Study for the Retrieval of Surface Temperature from Single Channel Middle-infrared Images (단일 밴드 중적외선 영상으로부터 표면온도 추정을 위한 기초연구)

  • Park, Wook;Lee, Yoon-Kyung;Won, Joong-Sun;Lee, Seung-Geun;Kim, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.189-194
    • /
    • 2008
  • Middle-infrared (MIR) spectral region between 3.0 and $5.0\;{\mu}m$ in wavelength is useful for observing high temperature events such as volcanic activities and forest fire. However, atmospheric effects and sun irradiance in day time has not been well studied for this MIR spectral band. The objectives of this basic study is to evaluate atmospheric effects and eventually to estimate surface temperature from a single channel MIR image, although a typical approach utilize split-window method using more than two channels. Several parameters are involved for the correction including various atmospheric data and sun-irradiance at the area of interest. To evaluate the effect of sun irradiance, MODIS MIR images acquired in day and night times were used for comparison. Atmospheric parameters were modeled by MODTRAN, and applied to a radiative transfer model for estimating the sea surface temperature. MODIS Sea Surface Temperature algorithm based upon multi-channel observation was performed in comparison with results from the radiative transfer model from a single channel. Temperature difference of the two methods was $0.89{\pm}0.54^{\circ}C$ and $1.25{\pm}0.41^{\circ}C$ from the day-time and night-time images, respectively. It is also shown that the emissivity effect has by more largely influenced on the estimated temperature than atmospheric effects. Although the test results encourage using a single channel MR observation, it must be noted that the results were obtained from water body not from land surface. Because emissivity greatly varies on land, it is very difficult to retrieval land surface temperature from a single channel MIR data.

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.

The Study of PM10, PM2.5 Mass Extinction Efficiency Characteristics Using LIDAR Data (라이다 데이터를 이용한 PM10, PM2.5 질량소산효율 특성 연구)

  • Kim, TaeGyeong;Joo, Sohee;Kim, Gahyeong;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1793-1801
    • /
    • 2021
  • From 2015 to June 2020, the backscattering coefficients of 532 and 1064 nm measured using LIDAR and the depolarization ratio at 532 nm were used to separate the backscattering coefficient at 532 nm as three types as PM10, PM2.5-10, PM2.5 according to particle size. The mass extinction efficiency (MEE) of three types was calculated using the mass concentration measured on the ground. The overall mean values of the calculated MEE were 5.1 ± 2.5, 1.7 ± 3.7, and 9.3 ± 6.3 m2/g in PM10, PM2.5-10, and PM2.5, respectively. When the mass concentration of PM10 and PM2.5 was low, higher than average MEE was calculated, and it was confirmed that the MEE decreased as the mass concentration increased. When the MEE was calculated for each type according to the mixing degree of Asian dust, PM2.5-10 was twice at pollution aerosol as high as 2.1 ± 2.8 m2/g, compare to pollution-dominated mixture, dust-dominated mixture, and pure dust of 1.1 ± 1.8, 1.4 ± 3.3, 1.1 ± 1.5 m2/g, respectively. However, PM2.5 MEE showed similar values irrespective of type: 9.4 ± 6.5, 9.0 ± 5.8, 10.3 ± 7.5, and 9.1 ± 9.0 m2/g. The MEE of PM10 was 5.6 ± 2.9, 4.4 ± 2.0, 3.6 ± 2.9, and 2.8 ± 2.4 m2/g in pollution aerosol (PA), pollution-dominated mixture (PDM), dust-dominated mixture (DDM), and pure dust (PD), respectively, and increased as the dust ratio value decreased. Even if the same type according to the same mass concentration or Asian dust mixture was shown, as the PM2.5/PM10 ratio decreased, the MEE of PM2.5-10 decreased and the MEE of PM2.5 showed a tendency to increase.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm (음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지)

  • Hyeong-Gyu Kim;Joongbin Lim;Kyoung-Min Kim;Myoungsoo Won;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.637-654
    • /
    • 2023
  • In recent years, the number of users has been increasing with the rapid development of earth observation satellites. In response, the Committee on Earth Observation Satellites (CEOS) has been striving to provide user-friendly satellite images by introducing the concept of Analysis Ready Data (ARD) and defining its requirements as CEOS ARD for Land (CARD4L). In ARD, a mask called an Unusable Data Mask (UDM), identifying unnecessary pixels for land analysis, should be provided with a satellite image. UDMs include clouds, cloud shadows, terrain shadows, etc. Terrain shadows are generated in mountainous terrain with large terrain relief, and these areas cause errors in analysis due to their low radiation intensity. previous research on terrain shadow detection focused on detecting terrain shadow pixels to correct terrain shadows. However, this should be replaced by the terrain correction method. Therefore, there is a need to expand the purpose of terrain shadow detection. In this study, to utilize CAS500-4 for forest and agriculture analysis, we extended the scope of the terrain shadow detection to shaded areas. This paper aims to analyze the potential for terrain shadow detection to make a terrain shadow mask for South and North Korea. To detect terrain shadows, we used a Hill-shade algorithm that utilizes the position of the sun and a surface's derivatives, such as slope and aspect. Using RapidEye images with a spatial resolution of 5 meters and Sentinel-2 images with a spatial resolution of 10 meters over the Korean Peninsula, the optimal threshold for shadow determination was confirmed by comparing them with the ground truth. The optimal threshold was used to perform terrain shadow detection, and the results were analyzed. As a qualitative result, it was confirmed that the shape was similar to the ground truth as a whole. In addition, it was confirmed that most of the F1 scores were between 0.8 and 0.94 for all images tested. Based on the results of this study, it was confirmed that automatic terrain shadow detection was well performed throughout the Korean Peninsula.

Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images (Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시)

  • Sihyun Lee;Yoojin Kang;Taejun Sung;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.979-995
    • /
    • 2023
  • As wildfires are difficult to predict, real-time monitoring is crucial for a timely response. Geostationary satellite images are very useful for active fire detection because they can monitor a vast area with high temporal resolution (e.g., 2 min). Existing satellite-based active fire detection algorithms detect thermal outliers using threshold values based on the statistical analysis of brightness temperature. However, the difficulty in establishing suitable thresholds for such threshold-based methods hinders their ability to detect fires with low intensity and achieve generalized performance. In light of these challenges, machine learning has emerged as a potential-solution. Until now, relatively simple techniques such as random forest, Vanilla convolutional neural network (CNN), and U-net have been applied for active fire detection. Therefore, this study proposed an active fire detection algorithm using state-of-the-art (SOTA) deep learning techniques using data from the Advanced Himawari Imager and evaluated it over East Asia and Australia. The SOTA model was developed by applying EfficientNet and lion optimizer, and the results were compared with the model using the Vanilla CNN structure. EfficientNet outperformed CNN with F1-scores of 0.88 and 0.83 in East Asia and Australia, respectively. The performance was better after using weighted loss, equal sampling, and image augmentation techniques to fix data imbalance issues compared to before the techniques were used, resulting in F1-scores of 0.92 in East Asia and 0.84 in Australia. It is anticipated that timely responses facilitated by the SOTA deep learning-based approach for active fire detection will effectively mitigate the damage caused by wildfires.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Assessment of Topographic Normalization in Jeju Island with Landsat 7 ETM+ and ASTER GDEM Data (Landsat 7 ETM+ 영상과 ASTER GDEM 자료를 이용한 제주도 지역의 지형보정 효과 분석)

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study focuses on the correction of topographic effects caused by a combination of solar elevation and azimuth, and topographic relief in single optical remote sensing imagery, and by a combination of changes in position of the sun and topographic relief in comparative analysis of multi-temporal imageries. For the Jeju Island, Republic of Korea, where Mt. Halla and various cinder cones are located, a Landsat 7 ETM+ imagery and ASTER GDEM data were used to normalize the topographic effects on the imagery, using two topographic normalization methods: cosine correction assuming a Lambertian condition and assuming a non-Lambertian c-correction, with kernel sizes of $3{\times}3$, $5{\times}5$, $7{\times}7$, and $9{\times}9$ pixels. The effects of each correction method and kernel size were then evaluated. The c-correction with a kernel size of $7{\times}7$ produced the best result in the case of a land area with various land-cover types. For a land-cover type of forest extracted from an unsupervised classification result using the ISODATA method, the c-correction with a kernel size of $9{\times}9$ produced the best result, and this topographic normalization for a single land cover type yielded better compensation for topographic effects than in the case of an area with various land-cover types. In applying the relative radiometric normalization to topographically normalized three multi-temporal imageries, more invariant spectral reflectance was obtained for infrared bands and the spectral reflectance patterns were preserved in visible bands, compared with un-normalized imageries. The results show that c-correction considering the remaining reflectance energy from adjacent topography or imperfect atmospheric correction yielded superior normalization results than cosine correction. The normalization results were also improved by increasing the kernel size to compensate for vertical and horizontal errors, and for displacement between satellite imagery and ASTER GDEM.

Monitoring of the Sea Surface Temperature in the Saemangeum Sea Area Using the Thermal Infrared Satellite Data (열적외선 위성자료를 이용한 새만금 해역 해수표면온도 모니터렁)

  • Yoon, Suk;Ryu, Joo-Hyung;Min, Jee-Eun;Ahn, Yu-Hwan;Lee, Seok;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.339-357
    • /
    • 2009
  • The Saemangeum Reclamation Project was launched as a national project in 1991 to reclaim a large coastal area of 401 km$^2$ by constructing a 33-km long dyke. The final dyke enclosure in April 2006 has transformed the tidal flat into lake and land. The dyke construction has abruptly changed not only the estuarine tidal system inside the dyke, but also the coastal marine environment outside the dyke. In this study, we investigated the spatial change of SST distribution using the Landsat-5/7 and NOAA data before and after the dyke completion in the Saemangeum area. Satellite-induced SST was verified by compared with the various in situ measurements such as tower, buoy, and water sample. The correlation coefficient resulted in above 0.96 and RMSE was about 1$^{\circ}C$ in all data. 38 Landsat satellite images from 1985 to 2007 were analyzed to estimate the temporal and spatial change of SST distribution from the beginning to the completion of the Samangeum dyke's construction. The seasonal change in detailed spatial distribution of SST was measured, however, the estimation of change during the Saemangeum dyke's construction was hard to figure out owing to the various environmental conditions. Monthly averaged SST induced from NOAA data from 1998 to 2007 has been analyzed for a complement of Landsat's temporal resolution. At the inside of the dyke, the change of SST from summer to winter was large due to the relatively high temperature in summer. In this study, multi-sensor thermal remote sensing is an efficient tool for monitoring the temporal and spatial distribution of SST in coastal area.

Seasonal and Inter-annual Variations of Sea Ice Distribution in the Arctic Using AMSR-E Data: July 2002 to May 2009 (AMSR-E 위성 데이터를 이용한 북극해빙분포의 계절 변동 및 연 변동 조사: 2002년 7월 ~ 2009년 5월)

  • Yang, Chan-Su;Na, Jae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2009
  • The Arctic environment is sensitive to change of sea-ice distribution. The increase and decrease of sea ice work to an index of globe warming progress. In order to predict the progress of hereafter earth global warming, continuous monitoring regarding a change of the sea ice area in the Arctic should be performed. The remote sensing based on an artificial satellite is most effective on the North Pole. The sea ice observation using a passive microwave sensor has been continued from 1970's. The determination of sea ice extent and ice type is one of the great successes of the passive microwave imagers. In this paper, to investigate the seasonal and inter-annual variation of sea-ice distribution we used here the sea ice data from July 2002 to May 2009 around the Arctic within $60^{\circ}N$ for the AMSR-E 12.5km sea-ice concentration, a passive microwave sensor. From an early analysis of these data, the arctic sea-ice extent has been steadily decreasing at a rate of about 3.1%, accounting for about $2{\times}10^5\;km^2$, which was calculated for the sea-ice cover reaching its minimum extent at the end of each summer. It is also revealed that this trend corresponds to a decline in the multi-year ice that is affected mainly by summer sea surface and air temperature increases. The extent of younger and thinner (first-year) ice decreased to the 2007 minimum, but rapidly recovered in 2008 and 2009 due to the dramatic loss in 2007. Seasonal variations of the sea-ice extent show significant year-to-year variation in the seasons of January-March in the Barents and Labrador seas and August-October in the region from the East Siberian and Chukchi seas to the North Pole. The spatial distribution of multi-year ice (7-year old) indicates that the perennial ice fraction has rapidly shrunk recently out of the East Siberian, Laptev, and Kara seas to the high region of the Arctic within the last seven years and the Northeast Passage could become open year-round in near future.