• Title/Summary/Keyword: Earth Pressure

Search Result 1,234, Processing Time 0.029 seconds

Analysis of Lateral Earth Pressures on Retaining Wall from Traffic Load Distribution (옹벽 상단 교통하중의 분포에 따른 옹벽의 수평 토압 분석)

  • Lee, Kicheol;Kim, Dongwook;Chung, Moon-Kyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.43-55
    • /
    • 2017
  • The purpose of this study is to investigate the effect of traffic loads on retaining wall stability. There is insufficient research on lateral earth pressure on retaining wall due to traffic load. In addition, limited detailed designs of retaining wall for transportation including number of lanes of road, magnitudes of axle loads, and vehicle formations are available. Because the lateral earth pressure on the retaining wall due to traffic loads is a function of the lateral distance from retaining wall, the wall height, and the locations of lanes, the analysis of lateral load on retaining wall from traffic loads is performed with direct or indirect reflection of these factors. As a result of the analysis, lateral earth loads induced from traffics can be considered negligible if the lateral distance of traffic load from wall exceeds the height of retaining wall. Therefore, it is practically reasonable to consider traffic loads within a lateral distance between wall and traffic load of the height of retaining wall.

Case Studies of Mass Concentration Variation in the Central-Southern Korean Peninsula Caused by Synoptic Scale Transport of Dust Storms

  • Kim, Hak-Sung;Cho, Jae-Hee
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.414-427
    • /
    • 2019
  • In East Asia, the long-range transport of dust storms originating from Mongolia and northern China affects airborne dust loadings over downwind areas in the southern Korean Peninsula. Since 1997, dust loading cases caused by dust storms have been observed using the thresholds of total suspended particles (TSP, ${\geq}250{\mu}g\;m^{-3}\;hr^{-1}$) and particulate matter less than $10{\mu}g$ ($PM_{10}$, ${\geq}190{\mu}g\;m^{-3}\;hr^{-1}$) in the central-southern Korean Peninsula. There were two dust loading cases that exceeded these thresholds in 2016 and three in 2017, which reflects the downward trend of the last twenty-one years in the central-southern Korean Peninsula. Furthermore, five other dust loading cases with mass concentrations lower than the thresholds were observed from 2016 to 2017. In the moderate dust loading cases exceeding the thresholds, a descending motion of cut-off lows below $45^{\circ}N$ and a southward trough at 500 hPa gpm isopleths intensified at the western ridge, and largely extended the surface high-pressure system over southeast China. Airborne dust loadings following pronounced north-westerlies in the forward side of the high-pressure system were transported to the surface of the central-southern Korean Peninsula. However, in slight dust loading cases lower than the thresholds, the restricted descending motion of cut-off lows over $45^{\circ}N$ and the southwestward trough at 500 hPa gpm isopleths intensified the zonal flow over the Korean Peninsula. Surface high- and low-pressure systems moved eastward from the source compared to moderate dust loading cases. Due to the zonal movement of dust storms traversing eastern China, slight dust loading cases were observed with relatively higher ratios of $PM_{2.5}/TSP$ and carbon monoxide (CO) in the central-southern Korean Peninsula.

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

Emplacement Depth of Cretaceous Granites in Kyeongsang Basin, E Korea (경상분지내 백악기 화강암류의 정치 깊이에 관한 연구)

  • Ko, Jeong-Seon;Yun, Sung-Hyo;Ahn, Ji-Young;Kim, Hyang-Soo;Choi, You-Jong
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 2000
  • In Kyeongsang basin, there were very dynamic magmatic activities, resulting to form volcanic and plutonic rocks. A plutonic recycle appeared in this region. Presumption of the pressure for hornblende-bearing granitic rock among the plutonic rocks, can support important informations for the emplacement depth of Cretaceous Bulgugsa granites in Kyeongsang basin. $Al^T$(Al total) contents of hornblende is related to the pressure, oxygen fugacity, and compositions of other minerals having the solid solution. So we apply the $Al^T$ content of hornblende to several empirical and experimental geobarometer systems to presume the pressure and to determine the emplacement depth of Cretaceous Bulgugsa granites in Kyeongsang basin from the inferred pressure. With the result that we applied the $Al^T$ contents of hornblende to the various geobarometers, there was a positive relationship between the pressure and $Al^T$. The minimum pressure value ranges from 0.73 to 1.70kbar in Kyeongju and the maximum value from 2.02 to 3.16kbar in Kimhae. And then the tectonic setting in Kyeongsang basin has no relation to the emplacement depth of Cretaceous granites and means variations with the movement of vertical component in each area. As we suppose that the density of earth's crust is $2.8g/cm^3$, the average values of the emplacement depth ranges in each area range from 2.6 to 11.4km. These data confirm the previous idea about the emplacement depth of Cretaceous granites in Kyeongsang basin, and these geobarometers using the $Al^T$ contents of hornblende is available though they have much limits. Therefore Cretaceous Bulgugsa granites in Kyeongsang basin was the shallow depth intrusive rut and the exposed granites was the shallow depth crust.

  • PDF

A study on the establishment of pressure limit values of management monitoring in tunnel (터널 유지관리계측의 압력 관리기준치 설정에 관한 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • This study analyzed a monitoring data, based on the initial limit values of monitoring in subway, of earth pressure and pore water pressure. The data is obtained from 8 sections of the Seoul metropolitan subway line No 6, 7 and 9 in about 5 years. Also, a research is performed to set up the limit values of management monitoring, which will be applied to management monitoring in tunnel, through comparing the limit values of overseas management monitoring data and that of domestic management monitoring data. And the result obtained from comparison show that the safety phase is 60% of allowable pressure, the attention phase is 80% of allowable pressure and the precision analysis phase is 100% of allowable pressure. Also, we presented a method of management monitoring by the absolute value which can be easily applied easily in practical affairs.

Dynamic failure features and brittleness evaluation of coal under different confining pressure

  • Liu, Xiaohui;Zheng, Yu;Hao, Qijun;Zhao, Rui;Xue, Yang;Zhang, Zhaopeng
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.401-411
    • /
    • 2022
  • To obtain the dynamic mechanical properties, fracture modes, energy and brittleness characteristics of Furong Baijiao coal rock, the dynamic impact compression tests under 0, 4, 8 and 12 MPa confining pressure were carried out using the split Hopkinson pressure bar. The results show that failure mode of coal rock in uniaxial state is axial splitting failure, while it is mainly compression-shear failure with tensile failure in triaxial state. With strain rate and confining pressure increasing, compressive strength and peak strain increase, average fragmentation increases and fractal dimension decreases. Based on energy dissipation theory, the dissipated energy density of coal rock increases gradually with growing confining pressure, but it has little correlation with strain rate. Considering progressive destruction process of coal rock, damage variable was defined as the ratio of dissipated energy density to total absorbed energy density. The maximum damage rate was obtained by deriving damage variable to reflect its maximum failure severity, then a brittleness index BD was established based on the maximum damage rate. BD value declined gradually as confining pressure and strain rate increase, indicating the decrease of brittleness and destruction degree. When confining pressure rises to 12 MPa, brittleness index and average fragmentation gradually stabilize, which shows confining pressure growing cannot cause continuous damage. Finally, integrating dynamic deformation and destruction process of coal rock and according to its final failure characteristics under different confining pressures, BD value is used to classify the brittleness into four grades.

Distribution of Vertical Earth Pressure due to Surcharge Loads Acting on Cantilever Retaining Wall Near Rigid Slope (강성경사면에 인접한 역T형 옹벽에 작용하는 상재하중에 의한 연직토압분포)

  • 유남재;이명욱;박병수;홍영길
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.141-152
    • /
    • 2002
  • This paper is the result of the experimental and numerical research on the distribution of vertical earth pressure due to surcharge loads acting on cantilever retaining wall close to a rigid slope with a stiff angle. Centrifuge model experiments were performed with changing the roughness of adjacent slope to the wall, distance between the wall and the slope and gravitational levels. Vertical earth pressures were measured by earth cells embedded in the backfill of the wall. Test results of vertical earth pressures due to surcharge loads were compared with theoretical estimations by using two different methods of limit equilibrium and the numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung(1993, 1997), were used to analyze test results. Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the vertical stress distributions acting on the backfill. FLAC with the hyperbolic constitutive model was also used for the numerical estimation. As a result of comparison of test results with theoretical and numerical estimations, distribution of vertical earth pressures obtained from centrifuge model tests is generally in good agreement with numerical estmated values by using FLAC whereas the wedge theory shows values close to test results in case the distance between the wall and the slope is narrow.

Passive p-y curves for rigid basement walls supporting granular soils

  • Imad, Elchiti;George, Saad;Shadi S., Najjar
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.335-346
    • /
    • 2023
  • For structures with underground basement walls, the soil-structure-interaction between the side soil and the walls affects the response of the system. There is interest in quantifying the relationship between the lateral earth pressure and the wall displacement using p-y curves. To date, passive p-y curves in available limited studies were assumed elastic-perfectly plastic. In reality, the relationship between earth pressure and wall displacement is complex. This paper focuses on studying the development of passive p-y curves behind rigid walls supporting granular soils. The study aims at identifying the different components of the passive p-y relationship and proposing a rigorous non-linear p-y model in place of simplified elastic-plastic models. The results of the study show that (1) the p-y relationship that models the stress-displacement response behind a rigid basement wall is highly non-linear, (2) passive p-y curves are affected by the height of the wall, relative density, and depth below the ground surface, and (3) passive p-y curves can be expressed using a truncated hyperbolic model that is defined by a limit state passive pressure that is determined using available logarithmic spiral methods and an initial slope that is expressed using a depth-dependent soil stiffness model.

Effect of Twisted Hollow Fiber Membranes in a Module: Computational Fluid Dynamics Simulations on the Pressure and Concentration Profile of the Module in the forward Osmosis (비틀린 중공사막이 모듈에 미치는 영향: 전산 유체역학 시뮬레이션을 통한 정삼투 모듈의 압력과 농도 분포)

  • Kim, Suhun;Lee, Chulmin;Kim, In S.
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.66-77
    • /
    • 2020
  • The current study focused on the effect of twisting hollow fibers (HFs) in a module during forward osmosis operation mode. Computational fluid dynamics simulation was employed for a straight HF module and twisted modules with five different angles to predict the mass transfer and observe the draw solution profile in terms of concentration and pressure. The simulation results showed that when the membranes were twisted, the concentration was distributed more evenly and the pressure at the module outlet increased gradually as the twisting angle increased. As pressure at the outlet increased, the fluid velocity inside the membrane decreased and the residence time of fluid increased, thereby facilitating mass exchange across the membrane. This is evidenced by a doubling of the ratio of water flux through the membrane in module flux when the HFs were twisted.