References
- S. Zhao, L. Zou, C. Y. Tang, and D. Mulcahy, "Recent developments in forward osmosis: Opportunities and challenges", J. Membr. Sci., 396, 1 (2012). https://doi.org/10.1016/j.memsci.2011.12.023
- D. Ma, S. B. Peh, G. Han, and S. B. Chen, "Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection", ACS Appl. Mater. Interfaces., 9, 7523 (2017). https://doi.org/10.1021/acsami.6b14223
- S. Kook, C. D. Swetha, J. Lee, C. Lee, T. Fane, and I. S. Kim, "Forward osmosis membranes under null-pressure condition: Do hydraulic and osmotic pressures have identical nature?", Environ. Sci. Technol., 52, 3556 (2018). https://doi.org/10.1021/acs.est.7b05265
- A. J. Ansari, F. I. Hai, W. E. Price, J. E. Drewes, and L. D. Nghiem, "Forward osmosis as a platform for resource recovery from municipal wastewater - A critical assessment of the literature", J. Memb. Sci., 529, 195 (2017). https://doi.org/10.1016/j.memsci.2017.01.054
- M. Zhan, G. Gwak, D. Inhyuk, K. Park, and S. Hong, "Quantitative analysis of the irreversible membrane fouling of forward osmosis during wastewater reclamation: Correlation with the modified fouling index", J. Memb. Sci., 597, 117757 (2020). https://doi.org/10.1016/j.memsci.2019.117757
- S. S. Manickam and J. R. McCutcheon, "Understanding mass transfer through asymmetric membranes during forward osmosis: A historical perspective and critical review on measuring structural parameter with semi-empirical models and characterization approaches", Desalination, 421, 110 (2017). https://doi.org/10.1016/j.desal.2016.12.016
- E. Yang, C. M. Kim, J. Song, H. Ki, M. H. Ham, and I. S. Kim, "Enhanced desalination performance of forward osmosis membranes based on reduced graphene oxide laminates coated with hydrophilic polydopamine", Carbon, 117, 293 (2017). https://doi.org/10.1016/j.carbon.2017.03.005
- W. Xu, Q. Chen, and Q. Ge, "Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes", Desalination, 419, 101 (2017). https://doi.org/10.1016/j.desal.2017.06.007
- D. M. Warsinger, S. Chakraborty, E. W. Tow, M. H. Plumlee, C. Bellona, S. Loutatidou, L. Karimi, A. M. Mikelonis, A. Achilli, A. Ghassemi, L. P. Padhye, S. A. Snyder, S. Curcio, C. D. Vecitis, H. A. Arafat, and J. H. Lienhard, "A review of polymeric membranes and processes for potable water reuse", Prog. Polym. Sci., 81, 209 (2018). https://doi.org/10.1016/j.progpolymsci.2018.01.004
- D. Xiao, W. Li, S. Chou, R. Wang, and C. Y. Tang, "A modeling investigation on optimizing the design of forward osmosis hollow fiber modules", J. Memb. Sci., 392-393, 76 (2012). https://doi.org/10.1016/j.memsci.2011.12.006
- D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech, "Forward osmosis: Where are we now?", Desalination, 356, 271 (2015). https://doi.org/10.1016/j.desal.2014.10.031
- C. M. Werner, B. E. Logan, P. E. Saikaly, and G. L. Amy, "Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell", J. Membr. Sci., 428, 116 (2013). https://doi.org/10.1016/j.memsci.2012.10.031
- R. V. Linares, Z. Li, S. Sarp, S. S. Bucs, G. Amy, and J. S. Vrouwenvelder, "Forward osmosis niches in seawater desalination and wastewater reuse", Water Res., 66, 122 (2014). https://doi.org/10.1016/j.watres.2014.08.021
- J. Jang, I. Park, S. S. Chee, J. H. Song, Y. Kang, C. Lee, W. Lee, M. H. Ham, and I. S. Kim, "Graphene oxide nanocomposite membrane cooperatively cross-linked by monomer and polymer overcoming the trade-off between flux and rejection in forward osmosis", J. Memb. Sci., DOI:10.1016/j. memsci.2019.117684 (In press).
- S. Lin, "Mass transfer in forward osmosis with hollow fiber membranes", J. Memb. Sci., 514, 176 (2016). https://doi.org/10.1016/j.memsci.2016.04.053
- https://www.forwardosmosistech.com/the-4-different-designs-of-forward-osmosis-fo-membrane-modules/, March 30 (2014).
- https://aquaporin.com/fo/, October 17 (2019).
- https://www.forwardosmosistech.com/hollow-fiber-forward-osmosis-membrane-modules/, March 28 (2014).
- M. Brannock, Y. Wang, and G. Leslie, "Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation", Water Res., 44, 3181 (2010). https://doi.org/10.1016/j.watres.2010.02.029
- P. Sousa, A. Soares, E. Monteiro, and A. Rouboa, "A CFD study of the hydrodynamics in a desalination membrane filled with spacers", Desalination, 349, 22 (2014). https://doi.org/10.1016/j.desal.2014.06.019
- A. Cahyadi, S. Yang, and J. W. Chew, "CFD study on the hydrodynamics of fluidized granular activated carbon in AnFMBR applications", Sep. Purif. Technol., 178, 75 (2017). https://doi.org/10.1016/j.seppur.2017.01.023
- C. Lee, S. Kook, C. Choi, T. T. Nguyen, and I. S. Kim, "Effects of membrane envelope geometry on hydrodynamics inside draw channel of forward osmosis spiral wound membrane element", Desalin. Water Treat., 112, 282 (2018). https://doi.org/10.5004/dwt.2018.22155
- C. Choi, C. Lee, N.-S. Park, and I. S. Kim, "Numerical study of fluid behavior on protruding shapes within the inlet part of pressurized membrane module using computational fluid dynamics", Environ. Eng. Res., DOI:10.4491/eer.2018.423 (In Press).
- L. Zhuang, H. Guo, P. Wang, and G. Dai, "Study on the flux distribution in a dead-end outside-in hollow fiber membrane module", J. Membr. Sci., 495, 372 (2015). https://doi.org/10.1016/j.memsci.2015.07.060
- F. Parvaza, S. H. Hosseinib, K. Elsayedc, and G. Ahmadid, "Numerical investigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators", Sep. Purif. Technol., 201, 223 (2018). https://doi.org/10.1016/j.seppur.2018.03.001
- F. Zhou, G. Sun, Y. Zhang, H. Ci, and Q. Wei, "Experimental and CFD study on the effects of surface roughness on cyclone performance", Sep. Purif. Technol., 193, 175 (2018). https://doi.org/10.1016/j.seppur.2017.11.017
- M. Usta, M. Morabito, A. Anqi, M. Alrehili, A. Hakim, and A. Oztekin, "Twisted hollow fiber membrane modules for reverse osmosis-driven desalination", Desalination, 441, 21 (2018). https://doi.org/10.1016/j.desal.2018.04.027
- M. Shibuya, M. Yasukawa, S. Goda, H. Sakurai, T. Takahashi, M. Higa, and H. Matsuyama, "Experimental and theoretical study of a forward osmosis hollow fiber membrane module with a cross-wound configuration", J. Memb. Sci., 504, 10 (2016). https://doi.org/10.1016/j.memsci.2015.12.040
- S. P. Motevalian, A. Borhan, H. Zhou, and A. Zydney, "Twisted hollow fiber membranes for enhanced mass transfer", J. Memb. Sci., 514, 586 (2016). https://doi.org/10.1016/j.memsci.2016.05.027
- W. M. Haynes, "CRC Handbook of Chemistry and Physics", 93st ed., pp. 6-8, 6-231, CRC Press, Boca Raton, FL (2012).
- G. Pereira, R. Moreira, M. J. Vázquez, and F. Chenlo, "Kinematic viscosity prediction for aqueous solutions with various solutes", Chem. Eng. J., 81, 35 (2001). https://doi.org/10.1016/S1385-8947(00)00203-5
- L. Zhuang, H. Guo, G. Dai, and Z.-L. Xu, "Effect of the inlet manifold on the performance of a hollow fiber membrane module-A CFD study", J. Memb. Sci., 526, 73 (2017). https://doi.org/10.1016/j.memsci.2016.12.018
- https://aquaporin.com/wp-content/uploads/2019/08/Aquaporin-HFFO2-Datasheet.pdf, August 1 (2019).
- https://aquaporin.com/wp-content/uploads/2019/11/Aquaporin-HFFO2-Standard-Test-Setup.pdf, November 1 (2019).