DOI QR코드

DOI QR Code

Effect of Twisted Hollow Fiber Membranes in a Module: Computational Fluid Dynamics Simulations on the Pressure and Concentration Profile of the Module in the forward Osmosis

비틀린 중공사막이 모듈에 미치는 영향: 전산 유체역학 시뮬레이션을 통한 정삼투 모듈의 압력과 농도 분포

  • Kim, Suhun (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Chulmin (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, In S. (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
  • 김수헌 (광주과학기술원 지구환경공학부) ;
  • 이철민 (광주과학기술원 지구환경공학부) ;
  • 김인수 (광주과학기술원 지구환경공학부)
  • Received : 2019.12.23
  • Accepted : 2020.02.24
  • Published : 2020.02.29

Abstract

The current study focused on the effect of twisting hollow fibers (HFs) in a module during forward osmosis operation mode. Computational fluid dynamics simulation was employed for a straight HF module and twisted modules with five different angles to predict the mass transfer and observe the draw solution profile in terms of concentration and pressure. The simulation results showed that when the membranes were twisted, the concentration was distributed more evenly and the pressure at the module outlet increased gradually as the twisting angle increased. As pressure at the outlet increased, the fluid velocity inside the membrane decreased and the residence time of fluid increased, thereby facilitating mass exchange across the membrane. This is evidenced by a doubling of the ratio of water flux through the membrane in module flux when the HFs were twisted.

본 연구에서는 정삼투 중공사막 모듈에서 중공사막의 가닥을 비틀어 배치하였을 때의 효과를 알아보기 위해 CFD전산 유체 역학 프로그램을 통해 5개의 다른 각도로 비틀린 중공사막 모듈을 설계하고 시뮬레이션하여 비틀리지 않은 모듈과 비교하였다. 실험 결과, 중공사막이 비틀렸을 때, 모듈 내부의 유도 용액의 농도가 비틀리지 않을 때에 비해 고르게 분포하였다. 모듈 입구의 압력은 중공사막의 비틀림과 관계없이 일정한 값을 보였지만 출구의 압력은 중공사막이 비틀린 정도가 커질수록 증가하는 추세를 보였다. 출구의 압력이 높아짐에 따라 막 내부의 유체 속도가 감소하고 모듈 체류 시간이 증가하여 막사이의 물질 교환이 원활하게 이루어질 것으로 예측된다. 이는 결과적으로 막이 비틀려 있을 때의 모듈 플럭스가 투과 수량이 차지하는 비율이 그렇지 않을 때에 비해 2배 증가하였다.

Keywords

References

  1. S. Zhao, L. Zou, C. Y. Tang, and D. Mulcahy, "Recent developments in forward osmosis: Opportunities and challenges", J. Membr. Sci., 396, 1 (2012). https://doi.org/10.1016/j.memsci.2011.12.023
  2. D. Ma, S. B. Peh, G. Han, and S. B. Chen, "Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection", ACS Appl. Mater. Interfaces., 9, 7523 (2017). https://doi.org/10.1021/acsami.6b14223
  3. S. Kook, C. D. Swetha, J. Lee, C. Lee, T. Fane, and I. S. Kim, "Forward osmosis membranes under null-pressure condition: Do hydraulic and osmotic pressures have identical nature?", Environ. Sci. Technol., 52, 3556 (2018). https://doi.org/10.1021/acs.est.7b05265
  4. A. J. Ansari, F. I. Hai, W. E. Price, J. E. Drewes, and L. D. Nghiem, "Forward osmosis as a platform for resource recovery from municipal wastewater - A critical assessment of the literature", J. Memb. Sci., 529, 195 (2017). https://doi.org/10.1016/j.memsci.2017.01.054
  5. M. Zhan, G. Gwak, D. Inhyuk, K. Park, and S. Hong, "Quantitative analysis of the irreversible membrane fouling of forward osmosis during wastewater reclamation: Correlation with the modified fouling index", J. Memb. Sci., 597, 117757 (2020). https://doi.org/10.1016/j.memsci.2019.117757
  6. S. S. Manickam and J. R. McCutcheon, "Understanding mass transfer through asymmetric membranes during forward osmosis: A historical perspective and critical review on measuring structural parameter with semi-empirical models and characterization approaches", Desalination, 421, 110 (2017). https://doi.org/10.1016/j.desal.2016.12.016
  7. E. Yang, C. M. Kim, J. Song, H. Ki, M. H. Ham, and I. S. Kim, "Enhanced desalination performance of forward osmosis membranes based on reduced graphene oxide laminates coated with hydrophilic polydopamine", Carbon, 117, 293 (2017). https://doi.org/10.1016/j.carbon.2017.03.005
  8. W. Xu, Q. Chen, and Q. Ge, "Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes", Desalination, 419, 101 (2017). https://doi.org/10.1016/j.desal.2017.06.007
  9. D. M. Warsinger, S. Chakraborty, E. W. Tow, M. H. Plumlee, C. Bellona, S. Loutatidou, L. Karimi, A. M. Mikelonis, A. Achilli, A. Ghassemi, L. P. Padhye, S. A. Snyder, S. Curcio, C. D. Vecitis, H. A. Arafat, and J. H. Lienhard, "A review of polymeric membranes and processes for potable water reuse", Prog. Polym. Sci., 81, 209 (2018). https://doi.org/10.1016/j.progpolymsci.2018.01.004
  10. D. Xiao, W. Li, S. Chou, R. Wang, and C. Y. Tang, "A modeling investigation on optimizing the design of forward osmosis hollow fiber modules", J. Memb. Sci., 392-393, 76 (2012). https://doi.org/10.1016/j.memsci.2011.12.006
  11. D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech, "Forward osmosis: Where are we now?", Desalination, 356, 271 (2015). https://doi.org/10.1016/j.desal.2014.10.031
  12. C. M. Werner, B. E. Logan, P. E. Saikaly, and G. L. Amy, "Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell", J. Membr. Sci., 428, 116 (2013). https://doi.org/10.1016/j.memsci.2012.10.031
  13. R. V. Linares, Z. Li, S. Sarp, S. S. Bucs, G. Amy, and J. S. Vrouwenvelder, "Forward osmosis niches in seawater desalination and wastewater reuse", Water Res., 66, 122 (2014). https://doi.org/10.1016/j.watres.2014.08.021
  14. J. Jang, I. Park, S. S. Chee, J. H. Song, Y. Kang, C. Lee, W. Lee, M. H. Ham, and I. S. Kim, "Graphene oxide nanocomposite membrane cooperatively cross-linked by monomer and polymer overcoming the trade-off between flux and rejection in forward osmosis", J. Memb. Sci., DOI:10.1016/j. memsci.2019.117684 (In press).
  15. S. Lin, "Mass transfer in forward osmosis with hollow fiber membranes", J. Memb. Sci., 514, 176 (2016). https://doi.org/10.1016/j.memsci.2016.04.053
  16. https://www.forwardosmosistech.com/the-4-different-designs-of-forward-osmosis-fo-membrane-modules/, March 30 (2014).
  17. https://aquaporin.com/fo/, October 17 (2019).
  18. https://www.forwardosmosistech.com/hollow-fiber-forward-osmosis-membrane-modules/, March 28 (2014).
  19. M. Brannock, Y. Wang, and G. Leslie, "Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation", Water Res., 44, 3181 (2010). https://doi.org/10.1016/j.watres.2010.02.029
  20. P. Sousa, A. Soares, E. Monteiro, and A. Rouboa, "A CFD study of the hydrodynamics in a desalination membrane filled with spacers", Desalination, 349, 22 (2014). https://doi.org/10.1016/j.desal.2014.06.019
  21. A. Cahyadi, S. Yang, and J. W. Chew, "CFD study on the hydrodynamics of fluidized granular activated carbon in AnFMBR applications", Sep. Purif. Technol., 178, 75 (2017). https://doi.org/10.1016/j.seppur.2017.01.023
  22. C. Lee, S. Kook, C. Choi, T. T. Nguyen, and I. S. Kim, "Effects of membrane envelope geometry on hydrodynamics inside draw channel of forward osmosis spiral wound membrane element", Desalin. Water Treat., 112, 282 (2018). https://doi.org/10.5004/dwt.2018.22155
  23. C. Choi, C. Lee, N.-S. Park, and I. S. Kim, "Numerical study of fluid behavior on protruding shapes within the inlet part of pressurized membrane module using computational fluid dynamics", Environ. Eng. Res., DOI:10.4491/eer.2018.423 (In Press).
  24. L. Zhuang, H. Guo, P. Wang, and G. Dai, "Study on the flux distribution in a dead-end outside-in hollow fiber membrane module", J. Membr. Sci., 495, 372 (2015). https://doi.org/10.1016/j.memsci.2015.07.060
  25. F. Parvaza, S. H. Hosseinib, K. Elsayedc, and G. Ahmadid, "Numerical investigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators", Sep. Purif. Technol., 201, 223 (2018). https://doi.org/10.1016/j.seppur.2018.03.001
  26. F. Zhou, G. Sun, Y. Zhang, H. Ci, and Q. Wei, "Experimental and CFD study on the effects of surface roughness on cyclone performance", Sep. Purif. Technol., 193, 175 (2018). https://doi.org/10.1016/j.seppur.2017.11.017
  27. M. Usta, M. Morabito, A. Anqi, M. Alrehili, A. Hakim, and A. Oztekin, "Twisted hollow fiber membrane modules for reverse osmosis-driven desalination", Desalination, 441, 21 (2018). https://doi.org/10.1016/j.desal.2018.04.027
  28. M. Shibuya, M. Yasukawa, S. Goda, H. Sakurai, T. Takahashi, M. Higa, and H. Matsuyama, "Experimental and theoretical study of a forward osmosis hollow fiber membrane module with a cross-wound configuration", J. Memb. Sci., 504, 10 (2016). https://doi.org/10.1016/j.memsci.2015.12.040
  29. S. P. Motevalian, A. Borhan, H. Zhou, and A. Zydney, "Twisted hollow fiber membranes for enhanced mass transfer", J. Memb. Sci., 514, 586 (2016). https://doi.org/10.1016/j.memsci.2016.05.027
  30. W. M. Haynes, "CRC Handbook of Chemistry and Physics", 93st ed., pp. 6-8, 6-231, CRC Press, Boca Raton, FL (2012).
  31. G. Pereira, R. Moreira, M. J. Vázquez, and F. Chenlo, "Kinematic viscosity prediction for aqueous solutions with various solutes", Chem. Eng. J., 81, 35 (2001). https://doi.org/10.1016/S1385-8947(00)00203-5
  32. L. Zhuang, H. Guo, G. Dai, and Z.-L. Xu, "Effect of the inlet manifold on the performance of a hollow fiber membrane module-A CFD study", J. Memb. Sci., 526, 73 (2017). https://doi.org/10.1016/j.memsci.2016.12.018
  33. https://aquaporin.com/wp-content/uploads/2019/08/Aquaporin-HFFO2-Datasheet.pdf, August 1 (2019).
  34. https://aquaporin.com/wp-content/uploads/2019/11/Aquaporin-HFFO2-Standard-Test-Setup.pdf, November 1 (2019).