• 제목/요약/키워드: Earth Pressure

검색결과 1,232건 처리시간 0.027초

Compositional Variation of Arsenopyrites in Arsenic and Polymetallic Ores from the Ulsan Mine, Republic of Korea, and their Application to a Geothermometer (울산광산산(蔚山鑛山産) 유비철석(硫砒鐵石)의 조성변화(組成變化) 및 지질온도계(地質溫度計)에 대(對)한 적용(適用))

  • Choi, Seon-Gyu;Chung, Jae-Ill;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • 제19권3호
    • /
    • pp.199-218
    • /
    • 1986
  • Arsenopyrite in arsenic and polymetallic ores from calcic Fe-W skarn deposit of the Ulsan mine, Republic of Korea, has been investigated by means of electron microprobe analysis and X-ray diffractometry. As a result, it is revealed that the Ulsan arsenopyrite may be classified into the following three species with different generation on the basis of its mode of occurrence, chronological order during polymetallic mineralization and chemical composition; arsenopyrites I, II and III. 1) Arsenopyrite I-(Ni, Co)-bearing species belonging to the oldest generation, which has crystallized together with (Ni, Co)-arsenides and -sulpharsenides in the early stage of polymetallic mineralization. In rare cases, it contains a negligible amount of antimony. It occurs usually as discrete grains with irregular outline, showing rarely subhedral form, and is diffused in skarn zone. The maximum contents of nickel and cobalt are 10.04 Ni and 2.45 Co (in weight percent). Occasionally, it shows compositional zoning with narrow rim of lower (Ni+Co) content. 2) Arsenopyrite II-arsenian species, in which (Ni+Co) content is almost negligible, may occur widely in arsenic ores, and its crystallization has followed that of arsenopyrite I. It usually shows subhedral to euhedral form and is closely associated with $l{\ddot{o}}llingite$, bismuth, bismuthinite, chalcopyrite, sphalerite, bismuthian tennantite, etc. It is worthy of note that arsenopyrite II occasionally contains particles consisting of both bismuth and bismuthinite. 3) Arsenopyrite III-(Ni, Co)-free, S-excess and As-deficient species is close to the stoichiometric composition, FeAsS. It occurs in late hydrothermal veins, which cut clearly the Fe-W ore pipe and the surrounding skarn zone. It shows euhedral to subhedral form, being extremely coarse-grained, and is closely associated with pyrite, "primary" monoclinic pyrrhotite, galena, sphalerite, etc. Among three species of the Ulsan arsenopyrite, arsenopyrite I does not serve as a geothermometer, because (Ni+Co) content always exceeds 1 weight percent. In spite of the absence of Fe-S minerals as sulphur-buffer assemblage, the presence of $Bi(l)-Bi_2S_3$ sulphur-buffer enables arsenopyrite II to apply successfully to the estimation of either temperature and sulphur fugacity, the results are, $T=460{\sim}470^{\circ}C$, and log $f(S_2)=-7.4{\sim}7.0$. With reference to arsenopyrite III, only arsenopyrite coexisting with pyrite and "primary" monoclinic pyrrhotite may serve to restrict the range of both temperature and sulphur fugacity, $T=320{\sim}440^{\circ}C$, log $f(S_2)=-9.0{\sim}7.0$. These temperature data are consistent with those obtained by fluid inclusion geothermometry on late grandite garnet somewhat earlier than arsenopyrite II. At the beginning of this paper, the geological environments of the ore formation at Ulsan are considered from regional and local geologic settings, and physicochemical conditions are suspected, in particular the formation pressure (lithostatic pressure) is assumed to be 0.5kb (50MPa). The present study on arsenopyrite geothermometry, however, does not bring about any contradictions against the above premises. Thus, the following genetical view on the Ulsan ore deposit previously advocated by two of the present authors (Choi and Imai) becomes more evident; the ore deposit was formed at shallow depth and relatively high-temperature with steep geothermal gradient-xenothermal conditions.

  • PDF

Repeatability and Reproducibility in Effective Porosity Measurements of Rock Samples (암석시험편 유효공극률 측정의 반복성과 재현성)

  • Lee, Tae Jong;Lee, Sang Kyu
    • Geophysics and Geophysical Exploration
    • /
    • 제15권4호
    • /
    • pp.209-218
    • /
    • 2012
  • Repeatability and reproducibility in solid weight and effective porosity measurements have been discussed using 8 core samples with different diameters, lengths, rock types, and effective porosities. Further, the effect of temperature on the effective porosity measurement has been discussed as well. Effective porosity of each sample has been measured 7 times with vacuum saturation method with vacuum pressure of 1 torr and vacuum time of 80 minutes. Firstly, effective porosity of each sample is measured one by one, so that it can provide a reference value. Then for reproducibility check, effective porosity measurements with vacuum saturation of 2, 4, and 8 samples simultaneously have been performed. And finally, repeated measurements for 3 times for each sample are made for repeatability check. Average deviation from the reference set in solid weight showed 0.00 $g/cm^3$, which means perfect repeatability and reproducibility. For effective porosity, average deviations are less than 0.07% and 0.05% in repeatability and reproducibility test sets, respectively, which are in good agreement too. Most of porosities measured in reproducibility test lies within the deviation range in repeatability test sets. Thus, simultaneous vacuum saturation of several samples has little impact on the effective porosity measurement when high vacuum pressure of 1 torr is used. Air temperature can cause errors on submerged weight read and even effective porosity, because it is closely related to the temperature, density, and buoyancy of water. Consequently, for accurate measurement of effective porosity in a laboratory, efforts for maintaining air or water temperature constant during the experiment, or a temperature correction from other information are needed.

The crenulation of Ogcheon metasedimentary rocks near the Ogcheon granite and the Honam shearing, Korea (옥천화강암 부근 옥천 변성퇴적암류의 파랑습곡구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • 제19권2호
    • /
    • pp.157-165
    • /
    • 2010
  • The age unknown Ogcheon metasedimentary rocks and the Jurassic Ogcheon granite (Jocgr) intruding it are distributed in the Ogcheon area, which is located in the central part of the Ogcheon Belt, Korea, This paper newly examines the timing of Honam shearing on the basis of the microstructural researches on time-relationship between the crenulation of Ogcheon metasedimentary rocks and the contact metamorphism by the intrusion of Jocgr. The D2 crenulation phase, which is defined by the microfolding of the S1 foliation in the metasedimentary rocks, is divided into two sub-phases. The one is a sub-phase of Early crenulation (D2a) which is included within old andalusite porphyroblasts, and the other is that of Late crenulation (D2b) which warps around the old andalusite. But they show the same dextral shear sense, the axial planes parallel to each other, and a single crenulation at outcrop scale. The contact metamorphism of andalusite-sillimanite type by the Jocgr occurred during the inter-phases of D2a and D2b, and crystallized the old andalusite masking the D2a crenulation and fibrous sillimanites replacing the D2a crenulation-forming muscovites. New andalusite porphyroblasts synkinematically grew in pressure shadows around the old andalusite or in its outermost mantles during the early stage of the D2b. The D2b occurred still continuously after the growth of the andalusite ceased (= later stage of the D2b). It indicates that the D2b occurred continuously during the period when the Ogcheon granite was still hot and cool. From this study, the crenulation history of Ogcheon metasedimentary rocks and the timing of Honam shearing would be newly established and reviewed as follows. (1) Early Honam shearing; formative period of Early crenulation, (2) main magmatic period of Jurassic granitoids; growth of the old andalusite and fibrous sillimanite by the intrusion of Jocgr, (3) main cooling period of Jurassic granitoids; formative period of Late crenulation related to Late Honam shearing, growth of the new andalusite in the early stage of D2b. Thus, this study proposes that the Honam shear movement would occur two times at least before and after the intertectonic phase which corresponds to the main magmatic period of Jurassic granitoids.

Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model (신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성)

  • PARK, SOYEONA;LEE, TONGSUP;JO, YOUNG-HEON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2016
  • Currently available surface seawater partial pressure carbon dioxide ($pCO_2$) data sets in the East Sea are not enough to quantify statistically the carbon dioxide flux through the air-sea interface. To complement the scarcity of the $pCO_2$ measurements, we construct a neural network (NN) model based on satellite data to map $pCO_2$ for the areas, which were not observed. The NN model is constructed for the Ulleung Basin, where $pCO_2$ data are best available, to map and estimate the variability of $pCO_2$ based on in situ $pCO_2$ for the years from 2003 to 2012, and the sea surface temperature (SST) and chlorophyll data from the MODIS (Moderate-resolution Imaging Spectroradiometer) sensor of the Aqua satellite along with geographic information. The NN model was trained to achieve higher than 95% of a correlation between in situ and predicted $pCO_2$ values. The RMSE (root mean square error) of the NN model output was $19.2{\mu}atm$ and much less than the variability of in situ $pCO_2$. The variability of $pCO_2$ with respect to SST and chlorophyll shows a strong negative correlation with SST than chlorophyll. As SST decreases the variability of $pCO_2$ increases. When SST is lower than $15^{\circ}C$, $pCO_2$ variability is clearly affected by both SST and chlorophyll. In contrast when SST is higher than $15^{\circ}C$, the variability of $pCO_2$ is less sensitive to changes in SST and chlorophyll. The mean rate of the annual $pCO_2$ increase estimated by the NN model output in the Ulleung Basin is $0.8{\mu}atm\;yr^{-1}$ from 2003 to 2014. As NN model can successfully map $pCO_2$ data for the whole study area with a higher resolution and less RMSE compared to the previous studies, the NN model can be a potentially useful tool for the understanding of the carbon cycle in the East Sea, where accessibility is limited by the international affairs.

Analysis of a Groundwater Flow System in Fractured Rock Mass Using the Concept of Hydraulic Compartment (수리영역 개념을 적용한 단열암반의 지하수유동체계 해석)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • 제16권1호
    • /
    • pp.69-83
    • /
    • 2006
  • This study aims to evaluate a complex groundwater flow system around the underground oil storage caverns using the concept of hydraulic compartment. For the hydrogeological analysis, the hydraulic testing data, the evolution of groundwater levels in 28 surface monitoring boreholes and pressure variation of 95 horizontal and 63 vertical water curtain holes in the caverns were utilized. At the cavern level, the Hydraulic Conductor Domains(fracture zones) are characterized one local major fracture zone(NE-1)and two local fracture zones between the FZ-1 and FZ-2 fracture zones. The Hydraulic Rock Domain(rock mass) is divided into four compartments by the above local fracture zones. Two Hydraulic Rock Domains(A, B) around the FZ-2 zone have a relatively high initial groundwater pressures up to $15kg/cm^2$ and the differences between the upper and lower groundwater levels, measured from the monitoring holes equipped with double completion, are in the range of 10 and 40 m throughout the construction stage, indicating relatively good hydraulic connection between the near surface and bedrock groundwater systems. On the other hand, two Hydraulic Rock Domains(C, D) adjacent to the FZ-1, the groundwater levels in the upper and lower zones are shown a great difference in the maximum of 120 m and the high water levels in the upper groundwater system were not varied during the construction stage. This might be resulted from the very low hydraulic conductivity$(7.2X10^{-10}m/sec)$ in the zone, six times lower than that of Domain C, D. Groundwater recharge rates obtained from the numerical modeling are 2% of the annual mean precipitation(1,356mm/year) for 20 years.

Occurrence Characteristics and Existing Forms of U-Th Containing Minerals in KAERI Underground Research Tunnel(KURT) Granite (한국원자력연구원 지하처분연구시설(KURT) 화강암의 U-Th 함유광물 산출특성 및 존재형태)

  • Cho, Wan Hyoung;Baik, Min Hoon;Park, Tae-Jin
    • Economic and Environmental Geology
    • /
    • 제50권2호
    • /
    • pp.117-128
    • /
    • 2017
  • Occurrence characteristics and existing forms of U-Th containing minerals in KURT (KAERI Underground Research Tunnel) granite are investigated to understand long-term behavior of radionuclides in granite considered as a candidate rock for the geological disposal of high-level radioactive waste. KURT granite primarily consists of quartz, feldspar and mica. zircon, REE(Rare Earth Element)-containing monazite and bastnaesite are also identified. Besides, secondary minerals such as sericite, microcline and chlorite including quartz vein and calcite vein are observed. These minerals are presumed to be accompanied by a post-hydrothermal process. U-Th containing minerals are mainly observed at the boundaries of quartz, feldspar and mica, mostly less than $30{\mu}m$ in size. Quantitative analysis results using EPMA (Electron Probe Micro-Analyzer) show that 74.2 ~ 96.5% of the U-Th containing minerals consist of $UO_2$ (3.39 ~ 33.19 wt.%), $ThO_2$ (41.61 ~ 50.24 wt.%) and $SiO_2$ (15.43 ~ 18.60 wt.%). Chemical structure of the minerals calculated using EPMA quantitative analysis shows that the U-Th minerals are silicate minerals determined as thorite and uranothorite. The U-Th containing silicate minerals are formed by a magmatic and hydrothermal process. Therefore, KURT granite formed by a magmatic differentiation is accompanied by an alteration and replacement owing to a hydrothermal process. U-Th containing silicate minerals in KURT granite are estimated to be recrystallized by geochemical factors and parameters such as temperature, pressure and pH owing to the hydrothermal process. By repeated dissolution/precipitation during the recrystallization process, U-Th containing silicate minerals such as thorite and uranothorite are formed according to the variation in the concentrated amount of U and Th.

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • 제9권1호
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

Reliability Based Stability Analysis and Design Criteria for Reinforced Concrete Retaining Wall (신뢰성(信賴性) 이론(理論)에 의한 R.C.옹벽(擁壁)의 안정해석(安定解析) 및 설계규준(設計規準))

  • Cho, Tae Song;Cho, Hyo Nam;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제3권3호
    • /
    • pp.71-86
    • /
    • 1983
  • Current R.C. retaining wall design is bared on WSD, but the reliability based design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the cantilever retaining wall, which is most common type of retaining wall, and also proposes the theoretical bases of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis and design of each part of cantilever retaining wall are derived and the uncertainty measuring algorithms of each equation are also derived by MFOSM using Coulomb's coefficient of the active earth pressure and Hansen's bearing capacity formula. The levels of uncertainties corresponding to these algorithms are proposed appropriate values considering our actuality. The target reliability indices (overturning: ${\beta}_0$=4.0, sliding: ${\beta}_0$=3.5, bearing capacity: [${\beta}_0$=3.0, design for flexure: [${\beta}_0$=3.0, design for shear: ${\beta}_0$=3.2) are selected as optimal values considering our practice based on the calibration with the current R.C. retaining wall design safety provisions. Load and resistance factors are measured by using the proposed uncertainties and the selected target reliability indices. Furthermore, a set of nominal safety factors, allowable stresses, and allowable shear stresses are proposed for the current WSD design provisions. It may be asserted that the proposed LRFD reliability based design criteria for the R.C. retaining wall may have to be incorporated into the current R.C. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

Analytical Methods of Hydroxyl Radical Produced by TiO2 Photo-catalytic Oxidation (TiO2 광촉매 산화 반응에서 생성된 수산기 라디칼 분석 방법)

  • Kim, Seong Hee;Lee, Sang-Woo;Kim, Jeong Jin;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • 제28권3호
    • /
    • pp.245-253
    • /
    • 2015
  • The performance of $TiO_2$ photo-catalytic oxidation process is significantly dependent on the amount of hydroxyl radicals produced during the process, and it is an essential prerequisite to quantify its production. However, precise and accurate methods for quantification of hydroxyl radicals have not been developed so far. For this reason, this study was initiated to compare existing methods for analysis of hydroxyl radicals produced by $TiO_2$ photo-catalytic oxidation and to propose a new method to overcome the limitation of established methods. To simulate $TiO_2$ photo-catalytic oxidation process, Degussa P25 which has been widely used as a standard $TiO_2$ photo-catalyst was used with the dose of 0.05 g/L. The light source of process was UVC mercury low-pressure lamp (11 W, $2,975mW/cm^2$). The results indicate that both potassium iodide (KI)/UV-vis spectrometer and terephthalic acid (TPA)/fluorescence spectrometer methods could be applied to qualitatively measure hydroxyl radicals via detection of triiodide ion ($I_3{^-}$) and 2-hydroxyterephthalic acid which are produced by reactions of iodine ion ($I^-$) and TPA with hydroxyl radicals, respectively. However, it was possible to quantitatively measure hydroxyl radicals using TPA method coupled with high-performance liquid chromatograph (HPLC). The analytical results using TPA/HPLC method show that hydroxyl radical of 0.013 M was produced after 8 hours operation of photo-catalytic oxidation under specific experimental conditions of this study. The proposed method is expected to contribute to precise the evaluation of the performance of photo-catalytic oxidation process.

Experimental and Numerical Study on the Effect of the Rain Infiltration with the Increase of Surface Temperature (지표면 온도상승이 빗물의 토양침투에 미치는 영향에 대한 실험 및 수치 해석적 연구)

  • Shin, Nara;Shin, Mi Soo;Jang, Dong Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제35권6호
    • /
    • pp.422-429
    • /
    • 2013
  • It is generally known that the increase of the Earth surface temperature due to the global warming together with the land desertification by rapid urban development has caused severe climate and weather change. In desert or desertification land, it is observed that there are always severe flooding phenomena, even if desert sand has the high porosity, which could be believed as the favorable condition of rain water infiltration into ground water. The high runoff feature causes possibly another heavy rain by quick evaporation with the depletion of underground water due to the lack of infiltration. The basic physics of desert flooding is reasonably assumed due to the thermal buoyancy of the higher temperature of the soil temperature than that of the rain drop. Considering the importance of this topic associated with water resource management and climate disaster prevention, no systematic investigation has, however, been reported in literature. In this study, therefore, a laboratory scale experiment together with the effort of numerical calculation have been performed to evaluate quantitatively the basic hypothesis of run-off mechanism caused by the increase of soil temperature. To this end, first, of all, a series of experiment has been made repeatedly with the change of soil temperature with well-sorted coarse sand having porosity of 35% and particle diameter, 2.0 mm. In specific, in case 1, the ground surface temperature was kept at $15^{\circ}C$, while in case 2 that was high enough at $70^{\circ}C$. The temperature of $70^{\circ}C$ was tested as this try since the informal measured surface temperature of black sand in California's Coachella Valley up to at 191 deg. $^{\circ}F$ ($88^{\circ}C$). Based on the experimental study, it is observed that the amount of runoff at $70^{\circ}C$ was higher more than 5% compared to that at $15^{\circ}C$. Further, the relative amount of infiltration by the decrease of the surface temperature from 70 to $15^{\circ}C$ is about more than 30%. The result of numerical calculation performed was well agreed with the experimental data, that is, the increase of runoff in calculation as 4.6%. Doing this successfully, a basic but important research could be made in the near future for the more complex and advanced topic for this topic.