• Title/Summary/Keyword: Earth Material

Search Result 899, Processing Time 0.024 seconds

The Materials of Earth Friendly Architecture (친환경 건축물의 자재에 관한 연구)

  • Yoo, Ho-Chun;Lee, Young-A
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.81-88
    • /
    • 2003
  • Earth friendly system is applied widely to industries for maintaining development. The declaration of earth friendly characteristic which is an indication of the total amount of energy in evaluation of earth friendly material is not easy to apply to building materials Therefore, Accurate standards about earth friendly materials are necessary. Earth friendly building materials should be considered in the fields of energy and resource consumption, changes in urban climate and resident health, etc. Among these fields, energy and resource consumption has released toxic pollutants into the air, caused indoor moisture problems and exhausted resources continuously. Especially, moisture problem is an indicator of main factors of earth friendly characteristic. Timber, Soil. Cement Mortar and Charcoal are used to examine the sustainable properties of materials of moisture control. The result shows that wood, charcoal and soil is vivid in changes of moisture absorption and discharge in comparison with that of cement mortar.

Decision Making Model for Optimal Earthwork Allocation Planning (최적 토량배분 계획을 위한 의사결정 모델)

  • Gwak, Han-Seong;Seo, Byoung-Wook;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.162-163
    • /
    • 2016
  • This paper presents a mathematical model for optimizing earthwork allocation plan that minimizes earthwork cost. The model takes into account operational constraints in the real-world earthwork such as material-type (i.e., quality level of material) and quantities excavated from cut-sections, required quality of material and quantities for each embankment layer, top-down cutting and bottom-up filling constraints, and allocation orders. These constraints are successfully handled by assuming the rock-earth material as the three dimensional (3D) blocks. The study is of value to project scheduler because the model identifies the optimal earth allocation plan (i.e., haul direction (cut and fill pairs), quantities of soil, type of material, and order of allocations) expeditiously and is developed as an automated system for usability. It is also relevant to estimator in that it computes more realistic earthworks costs estimation. The economic impact and validity of the mathematical model was confirmed by performing test cases.

  • PDF

A Study on the High Frequency Properties of Mn-Zn ferrite with Re2O3(R=Dy, Gd, Ho) Addition (Re2O3(R=Dy, Gd, Ho)첨가에 따른 Mn-Zn ferrite의 고주파 특성에 관한 연구)

  • 최우성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.538-548
    • /
    • 2003
  • We studied effects by Re$_2$O$_3$(R=Dy, Gd, Ho) addition on the properties of Mn-Zn ferrite. The doping concentration range from 0.05 wt% to 0.25 wt%. All samples were prepared by standard fabrication of ceramics. With increasing the rare earth oxides, specific density and initial permeability increased on the whole. But, the tendencies such as upper result had the measured value on limitation and characteristics saturated or decreased properties after that. In case of excessive addition of additive beyond some level, initial permeability properties of ferrite have gone down in spite of anomalous grain. With increasing the content of additive, both the real and imaginary component of complex permeability and the magnetic loss (tan$\delta$) increased. Because the increased rate of real component had higher than imaginary component, magnetic loss increased none the less for increasing the real component related with magnetic permeability. But, the magnetic loss of ferrite doped with the rare earth oxides was lower than that of Mn-Zn ferrite at any rate. The small amount of present rare earth oxides in Mn-Zn ferrite composition led to enhancement of resistivity in bulk, and more so in the grain boundary. It was seem to be due to the formation of mutual reaction such as between iron ions and rare earth element ions.

Novel process of rare-earth free magnet and thermochemical route for the fabrication of permanent magnet

  • Choi, Chul-Jin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.89-89
    • /
    • 2013
  • Rare earth (RE) - transition metal based high energy density magnets are of immense significance in various engineering applications. $Nd_2Fe_{14}B$ magnets possess the highest energy product and are widely used in whole industries. Simultaneously, composite alloys that are cheap, cost effective and strong commercially available have drawn great attention, because rare-earth metals are costly, less abundant and strategic shortage. We designed rare-earth free alloys and fabrication process and developed novel route to prepare $Nd_2Fe_{14}B$ powders by wet process employing spray drying and reduction-diffusion (R-D) without the use of high purity metals as raw material. MnAl-base permanent magnetic powders are potentially important material for rare-earth free magnets. We have prepared the nano-sized MnAl powders by plasma arc discharge and micron-sized MnAl powders by gas atomization. They showed good magnetic property, compared with that from conventional processes. $Nd_2Fe_{14}B$ powders with high coercivity of more than 10 kOe were successfully synthesized by adjusting R-D step, followed by precise washing system. It is considered that this process can be applied for the recycling of RE-elements extracted from ewaste including motors.

  • PDF

A case study on the landslide resulted from earth retaining wall failure (옹벽파괴에 의한 사면붕괴 사례연구)

  • Kim, Hyung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1084-1089
    • /
    • 2009
  • This paper presents the example of landslide triggered by the failure of earth retaining wall. Close examinations such as visual inspections and non-destructive testings revealed that the earth retaining wall does not have enough strength to resist active earth pressure and ground water pressure. This fact is proved to be a direct initiation of landslide. Numerical studies including slope stability analyses and seepage analyses were performed with material properties obtained by geophysical explorations and laboratory tests. The results of numerical studies show that the overturning of the earth retaining wall affects the slope stability, leading to landslide consequently.

  • PDF

A Revision of Mesozoic Equisetales Annuriopsis bunkeiensis Kimura et Kim from the Amisan Formation of Nampo Group, Korea

  • Lee, Won-Kook;Kim, Yeo-Sang;Kim, Chilng-Young;Kim, Hee-Soo;Kim, Jong-Heon
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.32-38
    • /
    • 2004
  • Some fine specimens of Annulariopsis bunkeiensis were collected from two fossil sites of the Amisan Formation of Nampo Group distributed in the Jogaegol, Boryeng City, Chungnam Province. According to our detailed study from our new material, the leaves of A. bunkeiensis are not mucronate, but emarginate at their apices. Accordingly, we revised the diagnostic characters given by Kimura and Kim (1988) mainly in regard to the leaf apex.

High-Efficiency Inhibition of Gravity Segregation in Al-Bi Immiscible Alloys by Adding Lanthanum

  • Jia, Peng;Zhang, Jinyang;Geng, Haoran;Teng, Xinying;Zhao, Degang;Yang, Zhongxi;Wang, Yi;Hu, Song;Xiang, Jun;Hu, Xun
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1262-1274
    • /
    • 2018
  • The inhibition of gravity segregation has been a long-standing challenge in fabrication and applications of homogeneous immiscible alloys. Therefore, the effect of rare-earth La on the gravity segregation of Al-Bi immiscible alloys was investigated to understand the homogenization mechanism. The results showed that the addition of La can completely suppress the gravity segregation. This is attributed to the nucleation of Bi-rich liquid phase on the in-situ produced $LaBi_2$ phase and the change of the shape of $LaBi_2@Bi$ droplets. In addition, a novel strategy is developed to prepare the homogeneous immiscible alloys through the addition of rare-earth elements. This strategy not only is applicable to other immiscible alloys, but also is conducive to finding more elements to suppress the gravity segregation. This study provided a useful reference for the fabrication of the homogeneous immiscible alloys.

Exploring Effects of a Visual Material Driven by Earth-Based Perspectives on the Spatial Representation of 5th Graders (지구 기반 관점의 시각 자료가 초등학교 5학년 학생들의 공간 표상에 미치는 영향 탐색)

  • Hyoung-Jin Kim;Seong-Hwan Jeong;Myeong-Kyeong Shin;Nan-Joo Kwon;Gyu-ho Lee
    • Journal of Science Education
    • /
    • v.46 no.2
    • /
    • pp.151-164
    • /
    • 2022
  • The 2015 revised science curriculum textbook of 6th graders describes 'day and night' as an astronomical phenomenon observed on a daily basis. Textbooks use only visual materials from a space-based perspective to explain the causes of day and night. This study aims to investigate what changes in spatial representations of 5th graders when additional visual materials of the Earth-based perspective were presented to them. It also shows that the Space and the Earth-based perspectives appear to be interconnected. The following are found in this study. First, when students were presented with a visual material of an Earth-based perspective, their spatial representations of both the Earth and the Space-based perspectives changed. Second, the visual material of an Earth-based perspective confirmed the possibility that students' spatial representation types could be different in many ways. Third, the effect on the spatial representation of each perspective is different depending on gender and the level of spatial representation.

Teachers' Understanding of Declination and Its Explanation Presented in the Earth Science II Textbook (편각에 대한 교사의 이해와 지구과학 II 교과서의 기술)

  • Lee, Gyuho
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.585-597
    • /
    • 2014
  • This study surveys how teachers can improve their understanding about the concept of declination only through reading the material presented as non-dipole magnetic model. This study also investigates a difference between the content of declination presented in "Earth Science II" textbook under the 2009 revised National Curriculum and that of the past one. Thirty teachers in Gyeonggi province and thirty three in the city of Seoul are surveyed; they are selected from the participants of required training that provides their first grade regular teaching certification. Findings of this study are as follows. First, the study finds that teacher participants possess several misconceptions about the declination. Their typical misconception show that a compass needle directly indicates the magnetic north pole. This type of misconception is not corrected only by a reading the material. Second, the study shows that the degree of teachers' understanding about the concept of declination improves through the reading the material of a non-dipole magnetic model. Third, the study reveals that the material of nod-dipole magnetic model is more effective with teachers than students. Finally, the study suggests that explanations including non-dipole magnetic model be revised in the current textbooks.