• Title/Summary/Keyword: Earth Magnetic Field

Search Result 360, Processing Time 0.028 seconds

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

Material Characteristics and Provenance Interpretation of the Stone Moulds for Bronze Artifacts from Galdong Prehistoric Site, Korea (완주 갈동유적 출토 청동기 용범의 재질특성 및 산지해석)

  • Lee, Chan-Hee;Kim, Ji-young;Han, Su-Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.387-419
    • /
    • 2005
  • Material characteristics and provenance interpretation of the raw materials for the stone moulds of bronze artifacts excavated in Galdong Prehistoric site were studied. The stone moulds are made of igneous hornblendite with coarse-grained holocrystalline textures. The surface color shows greenish grey to dark green with greasy luster. The value of magnetic susceptibility of the moulds ranges from 19.2 to 71.0 (mean ; $39.2{\times}10^{-3}$ SI unit).High value of magnetic susceptibility indicates high contents of magnetite as a ferromagnetic mineral and the wide range of the values are due to heterogeneous distribution of magnetite. These are characteristics of basic igneous rocks. The rock-forming minerals of the moulds mainly consist of amphibole, plagioclase and biotite. Pyroxene, chlorite and opaque minerals are also rarely present. A large quantity of carbon was detected on the dark black crust near the surface of the moulds by quantitative analysis. Geological field survey was carried out to identify a source of the raw materials of the stone moulds around Galdong site. Hornblendite or gabbroic rocks being similar to the moulds forming rock occur at Daeseongri, Sikcheonri and Gyodongri in Jangsoo, and Illdaeri in Namwon about 50 kilometers away from the site in a straight line. They have similarity with the moulds forming rock in magnetic susceptibility ranging from 16.1 to 72.4 (mean ; $39.9{\times}10^{-3}$ SI unit). Among those hornblendite or gabbroic rocks, one in Jangsoo area is the most similar to the moulds forming rock on the basis of petrological and mineralogical characteristics. Comparing normalized patterns of major, minor, rare earth and immobile elements contents of the moulds to them of hornblendite in Jangsoo area, geochemical evolution trend and behavior characteristics show affinities between them. It suggests that the moulds forming rock and hornblendite in Jangsoo area have been originated from cogenetic magma. This hornblendite is easy to engrave an inscription or detail graphics on the surface because of its softness, and has good thermal conductivity. Hornblendite in Sikcheonri, Jangsoo is particularly produced and used for stone wares until the present day. Therefore, it is probable that the stone materials of the moulds has been imported from Daeseongri, Sikcheonri and Gyodongri in Jangsoo area. However, it cannot be completely excluded the possibility that the material of the moulds was supplied from Illdaeri in Namwon area appearing the same type of hornblendite on a small outcrops. It is necessary to carry out further archaeological studies to identify several possibilities of migration process of raw materials.

Multi-purpose Geophysical Measurements System Using PXI (PXI를 이용한 다목적 물리탐사 측정 시스템)

  • Choi Seong-Jun;Kim Jung-Ho;Sung Nak-Hun;Jeong Ji-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.224-231
    • /
    • 2005
  • In geophysical field surveys, commercial equipments often fail to resolve the subsurface target or even sometimes fail to be applied because they do not fit to the various field situations or the physical properties of the medium or target. We developed a geophysical measurement system, which can be easily adapted for the various field situations and targets. The system based on PXI with A/D converter and some stand alone equipment such as Network Analyzer was applied to borehole radar survey, borehole sonic measurement and electromagnetic noise measurement. The system for borehole radar survey consists of PXI, Network Analyzer, dipole antennas, GPIB interface is used for PXI to control Network Analyzer. The system for borehole sonic measurement consists of PXI, 24 Bit A/D converter, high voltage pulse generator, transmitting and receiving piezoelectric sensors. The electromagnetic noise measurement system consists of PXI, 24 Bit A/D converter, 2 horizontal component electric field sensors and 2 horizontal and 1 vertical component magnetic filed sensors. The borehole radar system has been successfully applied to detect the width of the artificial tunnel through which the borehole pass and to image buried steel pipe, while the commercial borehole radar equipment failed. The borehole sonic system was tested to detect the width of artificial tunnel and showed a reasonable result. The characteristic of electromagnetic noise was grasped at an urban area with the data from the electromagnetic noise measurement system. The system is also applied to characterize the signal distortion by induction between the electric cables in resistivity survey. The system can be applied various geophysical problems with a simple modification of the system and sensors.

An Analysis on the Geomagnetic Transfer Function at Yongin Observatory Using by RR (Remote Reference) and SNS (Signal Noise Separation) Technique (원격참조(RR: Remote Reference) 기법과 신호잡음분리(SNS: Signal Noise Separation)기술을 이용한 용인 관측소의 지자기 전달함수 분석)

  • Yang Junmo;Lee Duk-Kee;Kwon Byung-Doo;Ryu Yong-Gyu;Youn Yong-Hoon
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.155-163
    • /
    • 2005
  • For an unbiased TF (Tansfer Function) estimations we investigate geomagnetic TF derived from ICHEON and YONGIN sites, employing RR (Remote Reference) and SNS (Signal Noise Separation) techniques. The Rh technique, which requires synchronized field variations recorded at a clean remote site, is a reliable method to minimize the bias of TF by uncorrelated noises in magnetic channels. Meanwhile, SNS technique based on the assumption of noise-free remote data can improve the signal-noise level by separating signal TF and noise TF, which is successfully applied to the environments with strong correlated noises. In this study, TF at YONGIN is analyzed using geomagnetic data from ICHEON site as a remote reference, which seem to have somewhat better data quality. The application of Rh technique reduces the bias of TF, which appears in single site robust estimation, and makes curves in the amplitude and phase of TF more smooth as frequency. Futhermore, in order to investigate noise source quantitatively, SNS technique is applied. The results of SNS suggest that dominant noise source seems to be located at western region of YONGIN. This noise source is considered to originate from railway system such as KTX and national subway. which passes through the west regions of YONGIN.

Frequency Sounding in Small-Loop EM Surveys (소형루프 전자탐사법에서의 주파수 수직탐사)

  • Cho In-Ky;Lim Jin-Taik
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.119-125
    • /
    • 2003
  • The small-loop electromagnetic (EM) technique has been used successfully for many geophysical investigations, particularly for shallow engineering and environmental surveys. In conventional small loop EM operating at small induction numbers, geometric sounding has been widely used because the depth of penetration of EM energy depends only on the source-receiver separation. Recently developed small loop EM system, however, measures the secondary magnetic field, $H^S$, at multiple frequencies with a fixed source-receiver separation and frequency sounding is tried actively. In this study, we analyzed the behavior of in-phase and quadrature components of ${H^S}_z$, for horizonal coplanar (HCP) configuration over two-layer models. Through this theoretical analysis, it was found that the in-phase component of ${H^S}_z$ is more suitable for frequency sounding than the quadrature component. But, the in-phase component of ${H^S}_z$ is too small to measure, especially in resistive and noisy environment like Korea. Using the fact that the quadrature component is much greater than the in-phase component and the difference of quadrature component of ${H^S}_z$ measured at two frequencies shows the same behavoir as the in-phase component, we suggested an alternative frequency sounding technique. Also, we defined an apparent conductivity, which reflects well the conductivity of subsurface layers.

A Case Study on The Data Processing and Interpretation of Aeromagnetic Survey Conducted in The Low Latitude Area: Stung Treng, Cambodia (저위도 캄보디아 스퉁트렝 지역의 항공자력탐사 자료처리 및 해석)

  • Shin, Eun-Ju;Ko, Kwang-Beom;You, Young-June;Jung, Yeon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.136-143
    • /
    • 2012
  • In this case study, we present the various and consistent processing techniques for the reasonable interpretation of aeromagnetic data. In the processing stage, we especially focused on the three major respects. First, in the low latitude area, severe artifacts are occurred as a result of reduction to the pole technique. To overcome this problem, variable alternative methods were investigated. From the comparison of each technique, we concluded that energy balancing method gives more fruitful result. Second, because of limited a priori information, it is nearly impossible to employ detailed geological survey due to wide and thick spreading of soils in the survey area. So we especially investigated the new techniques such as extracting slope, curvature and aspect information mainly used in GIS field as well as conventional methods. Finally, by using the Euler deconvolution, we extracted the depth information on the magnetic anomalous body. From the synthetic analysis between depth information and previous discussed results, the detailed future survey area was proposed. We think that a series of processing techniques discussed in this study may perform an important role in the domestic and abroad resource development project as a useful guideline.

Design and Development of the SNIPE Bus System (초소형위성 SNIPE 본체 설계 및 개발)

  • Kim, Hae-Dong;Choi, Won-Sub;Kim, Min-Ki;Kim, Jin-Hyung;Kim, KiDuck;Kim, Ji-Seok;Cho, Dong-Hyun;Lee, Jaejin
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.81-103
    • /
    • 2022
  • In this paper, the contents of the design and development process of the 6U micro-satellite Snipe (SNIPE, national name Toyosat; small scale magnetospheric and Ionospheric plasma experiment ), which was developed to observe the near-global space environment through polarization flight for the first time in Korea, were described. Snipe performs transversal flight to observe the Earth's surrounding space environment in three dimensions, and aims to simultaneously observe the space plasma density and temperature in the ionosphere, as well as temporal changes in the solar magnetic field and electromagnetic waves. In this way, it was developed by dividing it into a test certification model (EQM) and a flight model (FM) to perform the actual mission for at least six months, away from developing a cube satellite for short-term space technology verification or manpower training. Currently, Snipe, which has completed the development of a total of four FM and completed all space environment tests, is scheduled to launch 2023. In this paper, we introduce the design contents and development process of the Snipe satellite body ahead of launch, and hope that it will be a useful reference for the development of 6U-class micro-satellite for full-scale mission in Korea.

Effective 3-D GPR Survey for the Exploration of Old Remains (유적지 발굴을 위한 효율적 3차원 GPR 탐사)

  • Kim, Jung-Ho;Yi, Myeong-Jong;Son, Jeong-Sul;Cho, Seong-Jun;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.262-269
    • /
    • 2005
  • Since the buried cultural relics are three-dimensional (3-D) objects in nature, 3-D survey is more preferable in archeological exploration. 3-D Ground Penetrating Radar (GPR) survey based on very dense data in principle, however, might need much higher cost and longer time of exploration than other geophysical methods commonly used for the archeological exploration, such as magnetic and electromagnetic methods. We developed a small-scale continuous data acquisition system which consists of two sets of GPR antennas and the precise positioning device tracking the moving-path of GPR antenna automatically and continuously. Since the high cost of field work may be partly attributed to establishing many profile lines, we adopted a concept of data acquisition at arbitrary locations not along the pre-established profile lines. Besides this hardware system, we also developed several software packages in order to effectively process and visualize the 3-D data obtained by the developed system and the data acquisition concept. Using the developed system, we performed 3-D GPR survey to investigate the possible historical remains of Baekje Kingdom at Buyeo city, South Korea, prior to the excavation. Owing to the newly devised system, we could obtain 3-D GPR data of this survey area having areal extent over about $17,000m^2$ within only six-hours field work. Although the GPR data were obtained at random locations not along the pre-established profile lines, we could obtain high-resolution 3-D images showing many distinctive anomalies, which could be interpreted as old agricultural lands, waterways, and artificial structures or remains. This cast: history led us to the conclusion that 3-D GPR method is very useful not only to examine a small anomalous area but also to investigate the wider region of the archeological interests.

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.

Magnetic Characterization of the Cretaceous Rocks from the Buyeo and Hampyeong Basins (부여분지와 함평분지에 분포하는 백악기 암석에 대한 자기특성 연구)

  • Hong, Jun-Pyo;Suk, Dong-Woo;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.191-207
    • /
    • 2007
  • A paleomagnetic investigation for the Cretaceous rocks in the Buyeo and Hampyeong Basins, located out of the Gyeongsang Basin, was carried out in order to elucidate the paleomagnetic directions in conjunction with the formation of the basins. Typical stepwise thermal demagnetization and measurement methods were used to determine the directions of characteristic remanent magnetizations (ChRMs). The mean direction of the sedimentary rocks from the Buyeo Basin after bedding correction $(D/I=356.5^{\circ}/61.5^{\circ},\;k=39.3\;\alpha_{95}=7.4^{\circ})$, is more dispersed than that before bedding correction $(D/I=356.5^{\circ}/61.5^{\circ},\;k=39.3\;\alpha_{95}=7.4^{\circ})$, which suggests that the rocks in the Buyeo Basin were remagnetized. However, the statistics and dispersion of the ChRM directions after bedding correction are still acceptable and the paleomagnetic pole position after tilt correction $(Lat./Long.=69.3^{\circ}N/186.7^{\circ}E,\;K=11.6\;A_{95}=14.0^{\circ})$ is closer to that of the Late Cretaceous pole of the Korean Peninsula. More detailed study is needed to confirm the nature of the remagnetization in the Buyeo Basin. On the other hand, the paleomagnetic pole before bedding correction $(Lat./Long.=81.6^{\circ}N/106.9^{\circ}E,\;K=25.1\;A_{95}=9.3^{\circ})$ is positioned near the paleogene pole of the Eurasian APWP. The mean ChRM direction of the sedimentary rocks from the Hampyeong Basin after bedding correction is $D/I=32.5^{\circ}/55.4^{\circ},\;(k=35.6,\;\alpha_{95}=8.7^{\circ})$. It is more clustered than that before bedding correction $D/I=18.3^{\circ}/62.5^{\circ},\;k=14.1,\;\alpha_{95}=14.2^{\circ})$, indicating that the ChRM was acquired before tilting of the strata. The paleomagnetic pole position of the Cretaceous sedimentary rocks in the Hampyeong Basin, averaged out of site pole positions calculated from the tilt-corrected ChRMs, is $Lat./Long.=63.9^{\circ}N/202.7^{\circ}E,\;(K=21.3,\;A_{95}=7.6^{\circ})$, similar to the Late Cretaceous paleomagnetic pole of the Korean Peninsula $(Lat./Long.=70.9^{\circ}N/215.4^{\circ}E,\;A_{95}=5.3^{\circ})$, suggesting that the Hampyeong Basin has been stable since the Late Cretaceous period. One normal and two reversed ChRM directions are revealed through the measurements of the volcanic rocks from the Hampyeong Basin. Although these normal and reversed directions are not exactly antipodal, it is interpreted that the normal direction is the representative primary direction of the volcanic rocks of the Hampyeong Basin and the mixed polarity is the records of geomagnetic field at the time of the formation of the volcanic rocks. Paleomagnetic poles are at $Lat./Long.=70.2^{\circ}N/199.5^{\circ}E,\;(K=18.1,\;A_{95}=9.6^{\circ})$ for the normal direction, and $Lat./Long.=65.5^{\circ}S/251.3^{\circ}E,\;(K=7.1,\;A_{95}=20.7^{\circ})$ for the reversed direction. Compared with the representative pole positions of the Cretaceous period of the Korean Peninsula, it is concluded that the age of the volcanic rocks in the Hampyeong Basin is of the Late Cretaceous.