• Title/Summary/Keyword: Earth Heat

Search Result 428, Processing Time 0.026 seconds

Performance Analysis of an Earth Coupled Heat Pump System Operated by an Engine(II) - Performance Analysis of a Vapour Compression type Compact Heat Pump - (엔진구동 지열 열펌프의 성능 분석(II) - 소형 증기압축식 열펌프의 성능 분석 -)

  • 김영복;송대빈;손재길
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.501-512
    • /
    • 1999
  • In this study, the coefficient of performance of a vapour compression heat pump system was analyzed for the evaluation of the heat pump performance. A water-to-air heat pump was assembled and tested by changing the level of the compressor driving speed and the air mass flow rate during air heating process. The coefficient of performance for air heating was 2.6~3.8 and that for water cooling was 1.0~1.4. The coefficient of performance was not depending on the levels of the compressor driving speed or levels of the air mass flow rate, but on the temperature of the air and water. The coefficient of performance for air heating increased by about 0.2 with the water temperature increasing by 1$^{\circ}C$.

  • PDF

Experimental Study for Influence of Summertime Heat Sources and Basic States on Rossby Wave Propagation (여름철 열원과 기본장이 로스비 파동전파에 미치는 영향에 대한 실험 연구)

  • Kim, Seong-Yeol;Ha, Kyung-Ja;Yun, Kyung-Sook
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.505-518
    • /
    • 2010
  • We investigated the impacts of the diabatic heating location, vertical profile and basic state on the Rossby wave propagation. To examine the dynamical process of individual responses on the regional heat source, a dry version of the linear baroclinic model was used with climatological summertime (JJA) mean basic state and vertical structure of the diabatic heating for 1979-2008. Two sets of diabatic heating were constructed of those positioned in the mid-latitudes (Tibetan Plateau, eastern Mediterranean Sea, and the west-central Asia) and the tropics (the southern India, Bay of Bengal, and western Pacific). It was found that using the principal component analysis, atmospheric response to diabatic heating reaches to the steady state in 19th days in time. The prescribed mid-latitude forcing forms equivalent barotropic Rossby wave propagation along the westerly Asia jets, whereas the tropical forcing generates the Rossby wave train extending from the tropics to mid-latitudes. In relation to the maximum vertical profile, the mid-level forcing reveals a stronger response than the lower-level forcing, which may be caused by more effective Rossby wave response by the upper-level divergent flow. Under the different sub-seasonal mean state, both of the tropical and mid-latitude forcing induce the different sub-seasonal response intensity, due to the different basic-state wind.

Estimation of Air-Sea Heat Exchange Using BUOY Data at the Yellow Sea, Korea (부이 관측자료를 이용한 서해 해역의 해양-대기 열교환량 산출)

  • kang, Yune-Jeung;Hwang, Seung-On;Kim, Tae-Hee;Nam, Jae-Cheol
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.40-46
    • /
    • 2001
  • Heat exchange between the atmosphere and sea is produced using the data from two 3m discus buoy installed by KMA in 1996. The meteorological and oceanic characteristics at the Dukjukdo and Chilbaldo buoy for the period 1996 ${\sim}$ 2000 are discussed. Daily averaged sensible heat and latent heat flux at each site are estimated from bulk aerodynamic method using given data and analyzed. Quantitative analyses show SST indicates 1-year cycle like air temperature but has 1 month lag. Sea level pressure is lowest in July, humidity is higher from May to August, and wind speed has averaged value of 5 m/s and higher in autumn and winter. Sensible heat flux analyses present that strong heat loss from the sea occurs in autumn and winter and weak heat loss from atmosphere appears in spring and summer, and net sensible heat loss from the sea is found throughout the year. The ocean significantly releases latent heat into atmosphere from August to May but get a little latent heat from atmosphere in other months. Net latent heat loss from the sea is larger than net sensible heat loss except in January and February. Comparison with two sites suggests that the magnitude of heat flux and their fluctuation are generally stronger at Dukjukdo than at Chilbaldo. In case study, both sensible and latent heat flux is a little more at Chilbaldo in March 1998, but substantially stronger at Dukjukdo in November 1996.

  • PDF

Genetic Prokaryotic Diversity in Boring Slime from the Development of a Groundwater Heat Pump System (지하수 히트펌프 시스템의 지중 환경관리를 위한 시추 슬라임의 원핵생물 유전자 다양성)

  • Kim, Heejung;Lee, Siwon;Park, Junghee;Joun, Won-Tak;Kim, Jaeyeon;Kim, Honghyun;Lee, Kang-Kun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.550-556
    • /
    • 2016
  • Groundwater heat pump (GWHP) systems must consider phenomena such as clogging to improve system efficiency and maintenance. In this study, we evaluated the prokaryotic diversity in a boring slime sample obtained at a depth of 10 m, which represented an undisturbed sample not affected by aquifer drawdown. Bacteria belonging to the phyla Proteobacteria (20.8%), Acidobacteria (18.8%), Chloroflexi (16.9%), and Firmicutes (10.2%) were found. Additionally, 144 species were identified as belonging to the genus Koribacter. Archaeal phyla were detected including Thaumarchaeota (42.8%), Crenarchaeota (36.9%), and Euryarchaeota (17.4%) and the class level comprised the miscellaneous Crenarchaeota group (MCG), Finnish forest soil type B (FFSB), and Thermoplasmata, which collectively accounted for approximately 69.4% of the detected Archaea. Operational taxonomic units (OTUs) were analyzed to reveal 3,565 bacterial and 836 archaeal OTUs, with abundances of 7.81 and 6.68, and richnesses of 5.96E-4 and 2.86E-3, respectively. The distribution of the groundwater microbial community in the study area showed a higher proportion of non-classified or unidentified groups compared to typical communities in surface water and air. In addition, 135 (approx. 1.9%) reads were assigned to a bacterial candidate associated with clogging.

Marine Heat Waves Detection in Northeast Asia Using COMS/MI and GK-2A/AMI Sea Surface Temperature Data (2012-2021) (천리안위성 해수면온도 자료 기반 동북아시아 해수고온탐지(2012-2021))

  • Jongho Woo;Daeseong Jung;Suyoung Sim;Nayeon Kim;Sungwoo Park;Eun-Ha Sohn;Mee-Ja Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1477-1482
    • /
    • 2023
  • This study examines marine heat wave (MHW) in the Northeast Asia region from 2012 to 2021, utilizing geostationary satellite Communication, Ocean, and Meteorological Satellite (COMS)/Meteorological Imager sensor (MI) and GEO-KOMPSAT-2A (GK-2A)/Advanced Meteorological Imager sensor (AMI) Sea Surface Temperature (SST) data. Our analysis has identified an increasing trend in the frequency and intensity of MHW events, especially post-2018, with the year 2020 marked by significantly prolonged and intense events. The statistical validation using Optimal Interpolation (OI) SST data and satellite SST data through T-test assessment confirmed a significant rise in sea surface temperatures, suggesting that these changes are a direct consequence of climate change, rather than random variations. The findings revealed in this study serve the necessity for ongoing monitoring and more granular analysis to inform long-term responses to climate change. As the region is characterized by complex topography and diverse climatic conditions, the insights provided by this research are critical for understanding the localized impacts of global climate dynamics.

Behavior of Geosynthetic Reinforced Wall with Heat Induce Drainage Method During Rainfall (열유도 토목섬유 배수공법이 적용된 보강토 옹벽의 강우시 거동 특성)

  • Shin, Seung-min;Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • This paper presents the results of a scale model test to the effect of heat exchanger drainage method in retaining wall of weathered granite soil. Purpose to rise in the temperature of the heat wires inside the weathered granite soil is preventing the collapse of the retaining wall and drainage smoothly moved to the drainage layer. Especially using a spray gun to simulate the rainfall since the rainfall drainage work is important for the rainfall effect on soil, find the difference about displacement of the retaining wall, change of volume water content, drainage, earth pressure and change in the strain of the geosynthetic was effected to heat exchanger within the soil. The result from applying the heat exchanger method decreased the earth pressure and displacement of the wall and increased drainage of water.

Characteristics of Atmospheric Circulation and Heat Source related to Winter Cold Surge in Korea (한반도 겨울철 한파와 관련된 대기 순환과 열원의 특성)

  • Kim Maeng-Ki;Shin Sung-Chul;Lee Woo-Seop
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.560-572
    • /
    • 2005
  • This study investigates the characteristics of atmospheric circulation and the heat source $(Q_1)$ related to the winter cold surge in Korea from 1979 to 1999. The occurrence frequency of cold surge is about one event per year and $60\%$ of the total events occurred during the former period, before 1989. During the cold surge, the pressure pattern shows more dominant east-west dipole circulation pattern in the lower troposphere and the effect of upper level trough is stronger than normal cases. Temperature falling pattern over Korea shows that the pattern opposite to the temperature structure over Lake Baikal and temperature change has opposite signs between the low-middle level and upper level, with the boundary at 400 hPa. The analysis of heat source shows that atmospheric cooling by cold advection during the cold surge is balanced by adiabatic warming due to downward motion, indicating that the movement path of cold core is associated with that of heat sink. Therefore, the movement mechanism of the heat source and sink should be well known for understanding the maintenance mechanism of cold surge and predicting cold surges.

Photoluminescence properties of oxy-fluoride glass-ceramics of La2O3-CaF2-Al2O3-SiO2 system (La2O3-CaF2-Al2O3-SiO2 계 oxy-fluoride 결정화 유리의 광 발광 특성)

  • Ha, Taewan;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.84-88
    • /
    • 2021
  • The change of the photoluminescence properties of La2O3-CaF2-Al2O3-SiO2 glass-ceramics doped with rare earth material, that is used as laser and optical sensors, was analyzed according to heat treatment temperature. The heat treatment conditions for fabricating glass-ceramics were obtained through non-isothermal thermal analysis, and X-ray diffraction analysis was performed to determine the degree of crystal growth and kinds of crystal phases generated according to the heat treatment temperature. Using Scherrer's equation, it was predicted that crystals with a size of 25~40 nm would be generated inside the glass-ceramics. Photoluminescence (PL) analysis showed that the specimens heat-treated at 660℃ to 670℃ for 1 hour had the highest PL intensity. Also, from the CIE color coordinate analysis, all glass-ceramics specimens emitted red-orange light regardless of the heat treatment condition.

A Study on the Rare-earth Boronizing Treatment of STD 61 Steel (열간금형용강의 희토류붕화처리에 관한 연구)

  • Kim, C.C.;Youn, J.H.;Jang, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.217-223
    • /
    • 2000
  • The boronizing effects of STD 61 steel have been studied on the micro structure and hardness. The STD 61 Steel was soaked in molten salt, consisted of KCl, $BaCl_2$, NaF, $B_2O_3$, FeB, and Ce, at various temperatures and times. The boronizing conditions for the peak hardness were the temperature range of $900^{\circ}C$ to $950^{\circ}C$ for 5 hr and that of $1000^{\circ}C$ for 3 hr, respectively. Four boride layers such as FeB, $Fe_2B$, ${\alpha}$ and matrix layer surface were observed from the microscopic surface examination. The thickness of boride layer was increased by increasing the boronizing time and the temperature. The structure of boride layer was tooth shape.

  • PDF

Microstructure and Properties of Mg-RE-Zn Alloys for High Conductivity Parts (고전도성 부품용 Mg-RE-Zn계 합금의 미세조직 및 특성)

  • Kim, Jeong-Min;Kim, Nam-Hoon
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.151-155
    • /
    • 2014
  • The relatively low conductivity of conventional Mg-Al alloys often limits their areas of application. Therefore, several attempts to develop new high-conductivity magnesium alloys have been made recently. In this research, A Ce-rich rare-earth (RE)material and zinc were added to magnesium which contained no aluminum. As the RE and Zn content were increased, both the hardness and tensile strength were gradually increased, despite the fact that the electrical conductivity decreased slightly. The effects of an aging treatment on the conductivity and mechanical properties of Mg-RE-Zn alloys were also investigated. The electrical conductivity did not change according to the heat treatment conditions; however, the mechanical properties could be enhanced by proper aging heat treatments.