• Title/Summary/Keyword: EVP model

Search Result 7, Processing Time 0.018 seconds

A Study on the Effect of Energy Voucher Program on the Consumption and Expenditure of User Households (에너지바우처제도가 수급자 가구의 소비·지출에 미친 영향 연구)

  • Lee, Hyunjoo;Kim, Ji-hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.331-338
    • /
    • 2021
  • This study used data from the 10rd and 15th year of the Korean Welfare Panel to evaluate the effects of the Energy Voucher Program(EVP) on the consumption and expenditure of EVP users' households. The study consisted of program group using EVP and control group not using. Chi-square and t-test were used for the characteristic differences among the groups, and the difference of consumption expenditure was identified by multiple regression analysis. As a result, EVP had a statistically significant effect on the health care costs of EVP users' households, resulting in an increase in health care costs(𝛽=3.06). However, there was no statistically significant effect on the total cost of living, basic cost, education cost, and recreation/entertainment cost. Therefore, in order to increase the effectiveness of the EVP system, it is required to improve the EVP system by expanding the level of benefits and easing the qualification standards for the eligibility for benefits.

An Analysis of the Settlement Behavior of Soft Clayey Ground Considering the Effect of Creep during the Primary Consolidation (1차압밀과정중의 크리프의 영향을 고려한 연약 점성토지반의 침하거동 해석)

  • Baek, Won-Jin;Matsuda, Hiroshi;Choi, Woo-Jung;Kim, Chan-Kee;Song, Byung-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.107-115
    • /
    • 2008
  • This paper is performed to examine the effect of creep during the primary consolidation and the applicability of the Yin's EVP (Elasto-Visco-Plastic) model. In ordinary consolidation theories using the elastic model, the primary consolidation process can be expressed but the secondary consolidation process cannot. It is due to the viscosity, which can express the secondary consolidation, and is sometimes related to the scale effect (difference of the thickness of clay layer between laboratory sample and field condition) such as hypotheses Type A and Type B shown by Ladd et al. (1977). Usually, the existence of the creep during the primary consolidation has been conformed and the Type B is well acceped. On the other hand, from the large-scaled consolidation tests the intermediate characteristic between Type A and Type B was proposed as Type C by Aboshi (1973). In this study, to clarify the effect of creep on the settlement-time relation during the primary consolidation in detail, Type B consolidation tests were performed using the separate-type consolidation test apparatus for a peat and clay. Then the test results were analyzed by using Yin's EVP Model (Yin and Graham, 1994). In conclusion, followings were obtained. At the end of primary consolidation, the compression for the subspecimens should not be the same because of the difference of the excess pore water pressure dissipation rate. And the average settlement measured by the separate-type consolidometer coincides with the analyzed one using the Yin's EVP model. As for the dissipation of the excess pore water pressure, however, the measured excess pore water pressure dissipates faster compared with the Yin's model.

EVP Models for Wave Transformation in Regions of Slowly Varying Depth (EVP방법(方法)을 이용한 완경사(緩傾斜) 영역(領域)에서의 파랑변형(波浪變形) 수치모형(數値模型))

  • Oh, Seong Taek;Lee, Kil Seong;Lee, Chul Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.231-238
    • /
    • 1992
  • Error vector propagation method is applied to the elliptic mild slope equation in order to reduce the computation time. Results from the elliptic, parabolic, and hyperbolic models are compared with experimental data for an elliptic shoal. Also, results of the elliptic and hyperbolic models are compared with experimental data for a detached breakwater. As a result of applying this model. it is concluded that the present model satisfactorily reduces the computation time compared with other numerical models. In the accuracy of solutions, there are some oscillations but the trend compares well with other models.

  • PDF

Stress Analysis of Finite Multi-layered Soils (유한다층토지반의 응력해석(1))

  • 박병기;장용채
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.19-32
    • /
    • 1990
  • Generally foundation is composed of complicated multi - layers. Primary objective of this study is to perform numerical analysis on the distribution of stresses on the subgrade with the variation of constitutive equations, the structures and the depth of layer, rigidity, loading condition, etc. Multi - layered soils has been treated as Burmister's elastic model. However, in this research it was intended to analyzed the distribution of stresses on the subgrade with all of the multi - layered soils by using the EVP(elasto - viscoplastic) model, one of the numerical program based on the Biot's equation as governing equation. The numerical results are compared with those by the Burmister's and the Fox'method, which in turn proves to be satisfactory. This research is aiming at investigating the mechanism of stress transfer within a foundation by using computer program for multilayers foundation.

  • PDF

Analyzing consolidation data to obtain elastic viscoplastic parameters of clay

  • Le, Thu M.;Fatahi, Behzad;Disfani, Mahdi;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.559-594
    • /
    • 2015
  • A nonlinear creep function incorporated into the elastic visco-plastic model may describe the long-term soil deformation more accurately. However, by applying the conventional procedure, there are challenges to determine the model parameters due to limitation of suitable data points. This paper presents a numerical solution to obtain several parameters simultaneously for a nonlinear elastic visco-plastic (EVP) model using the available consolidation data. The finite difference scheme using the Crank-Nicolson procedure is applied to solve a set of coupled partial differential equations of the time dependent strain and pore water pressure dissipation. The model parameters are determined by applying the algorithm of trust-region reflective optimisation in conjunction with the finite difference solution. The proposed method utilises all available consolidation data during dissipation of the excess pore water pressure to determine the required model parameters. Moreover, the reference time in the elastic visco-plastic model can readily be adopted as a unit of time; denoting creep is included in the numerical predictions explicitly from the very first time steps. In this paper, the settlement predictions of thick soft clay layers are presented and discussed to evaluate and compare the accuracy and reliability of the proposed method against the graphical procedure to obtain the model parameters. In addition, comparison of the available experimental results to the numerical predictions confirms the accuracy of the numerical procedure.

Deformation Analysis of Soft Foundation with Vertical Drain Wells using the Interface Element Method -With Emphasis on Model Foundation and Actual Sand Drain Well Foundation- (접합요소에 의한 Vertical Drain Well 지반의 변형해석 - 모델지반과 실제 Sand Drain Well 지반을 중심으로 -)

  • Lee, Jean Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.227-237
    • /
    • 1993
  • This paper dealt with numerical analysis of sand drain considering the smear effect around drain wells and discontinuous deformation behavior due to difference in rigidity between drain materials and adjacent clayey soils. Biot's equation was selected as governing equation coupled with MODCAM (Modified Cam-clay) model or EVP(Elasto-Viscoplastic) model as constitutive equation. The validity as well as the accuracy of the method developed by author was checked by comparing the proposed method with those by Siriwardane and Ghaboussi using joint element. The FEM analysis developed in this study was applied to both 2-dimensional model foundation and actual foundation. the result of which proved to be satisfactory.

  • PDF

In vitro comparison of the accuracy of an occlusal plane transfer method between facebow and POP bow systems in asymmetric ear position

  • Dae-Sung Kim;So-Hyung Park;Jong-Ju Ahn;Chang-Mo Jeong;Mi-Jung Yun;Jung-Bo Huh;So-Hyoun Lee
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.5
    • /
    • pp.271-280
    • /
    • 2023
  • PURPOSE. This in vitro study aimed to compare the accuracy of the conventional facebow system and the newly developed POP (PNUD (Pusan National University Dental School) Occlusal Plane) bow system for occlusal plane transfer in asymmetric ear position. MATERIALS AND METHODS. Two dentists participated in this study, one was categorized as Experimenter 1 and the other as Experimenter 2 based on their clinical experience with the facebow (1F, 2F) and POP bow (1P, 2P) systems. The vertical height difference between the two ears of the phantom model was set to 3 mm. Experimenter 1 and Experimenter 2 performed the facebow and POP bow systems on the phantom model 10 times each, and the transfer accuracy was analyzed. The accuracy was evaluated by measuring the angle between the reference virtual plane (RVP) of the phantom model and the experimental virtual plane (EVP) of the upper mounting plate through digital superimposition. All data were statistically analyzed using a paired t-test (P < .05). RESULTS. Regardless of clinical experience, the POP bow system (0.53° ± 0.30 (1P) and 0.19° ± 0.18 (2P) for Experimenter 1 and 2, respectively) was significantly more accurate than the facebow system (1.88° ± 0.50 (1F) and 1.34° ± 0.25 (2F), respectively) in the frontal view (P < .05). In the sagittal view, no significant differences were found between the POP bow system (0.92° ± 0.50 (1P) and 0.73° ± 0.42 (2P) for Experimenter 1 and 2, respectively) and the facebow system (0.82° ± 0.49 (1F) and 0.60° ± 0.39 (2F), respectively), regardless of clinical experience (P > .05). CONCLUSION. In cases of asymmetric ear position, the POP bow system may transfer occlusal plane information more accurately than the facebow system in the frontal view, regardless of clinical experience.