• Title/Summary/Keyword: EVA FOAM

Search Result 26, Processing Time 0.03 seconds

Adhesion Enhancement of Solvent type and Water Soluble Adhesive Using Atmospheric Plasma (대기압 플라즈마를 이용한 용제형 및 수용성 접착제의 접착력 향상)

  • Jung, Young Sig;Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.148-153
    • /
    • 2009
  • An atmospheric plasma pre-treatment method was applied to PU foam, Leather (Action), Rubber to improve its adhesion using solvent and water soluble type pressure sensitive adhesion in atmospheric plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of reaction gas (nitrogen), rate of gas flow (30~100 mL/min), and reaction time (0~30 s) were examined in a plate plasma reactor. The result of the surface modification with respect to the treatment procedure was characterized by using SEM. Due to a de-crease of the contact angle of various materials, the greatest adhesion strength was achieved at optimum condition such as flow rate of 100 mL/min, reaction time of 10 second for an atmospheric plasma treatment of the PU foam, EVA foam, Leather (Action) and Rubber also resulted in the improvement of the adhesion.

  • PDF

A Study on the Mechanical Properties and Moisture Control Performance of Diatomite filled Olefin Foams (규조토를 함유한 올레핀계 폼의 기계적 물성 및 수분 제어 성능에 관한 연구)

  • Kim, Jae Yang;Lee, Ji Eun;Seong, Dong Gi
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Products using diatomaceous earth, which are used in various fields, are optimized for moisture absorption, but have problems such as high hardness, powder flying, and rough surface feel. To improve this, an olefin-based foam having low hardness and high elasticity was prepared by adding an excessive amount of inorganic material using EVA (Ethylene vinyl acetate) having low hardness and excellent elasticity. Diatomaceous earth was added to impart moisture absorption characteristics of the foam, and the moisture absorption/drying characteristics showed a moisture absorption rate of about 10 to 15% and a moisture drying rate of 10 to 70% depending on the content of the diatomaceous earth. Through this study, it was possible to manufacture a water-absorbing olefin-based foam with diatomaceous earth added, and it was confirmed that the diatomaceous earth added to the foam had a great influence on water absorption and dissipation due to its microstructure and characteristics.

Preparation of a Novel PU-LMO Adsorbent by Immobilization of LMO on Polyurethane Foam for Recovery of Lithium Ions (폴리우레탄 폼에 LMO를 고정화하여 리튬이온 회수를 위한 새로운 PU-LMO 흡착제의 제조)

  • You, Hae-Na;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.277-282
    • /
    • 2014
  • In this study, PU-LMO was made by immobilization of LMO on urethane foam (PU) with using an EVA as a binder. PU-LMO was characterized by using X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM). The optimal ratio of EVA/LMO for preparation of PU-LMO was 0.26 gEVA/gLMO. The adsorption of lithium ions by PU-LMO was found to follow the pseudo-second-order kinetic model. The equilibrium data fitted well with Langmuir isotherm model and the maximum removal capacity of lithium ions was 17.09 mg/g. The PU-LMO was found to have a remarkably high selectivity of lithium ions and high adsorption capacity because the distribution coefficient ($K_d$) of lithium ion was higher than those of other metal ions.

Cure Characteristics of Foaming EVA Compounds: Influence of EVA Types and Cure Systems

  • Choi, Sung-Seen;Bae, Jong Woo;Kim, Jung-Soo;Han, Dong-Hun
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.212-217
    • /
    • 2016
  • Influence of poly(ethylene-co-vinyl acetate) (EVA) types and cure systems on cure characteristics of foaming EVA compounds were investigated. Three kind EVAs with different VA contents were employed. Influence of triallyl cyanurate (TAC) and dicumylperoxide (DCP) content on the cure characteristics were examined. The minimum torque ($T_{min}$) and delta torque (${\Delta}T$) decreased as the VA content increased. The ${\Delta}T$ was increased by adding TAC and by increasing the DCP content. For the foaming EVA compounds without TAC, the cure times such as the minimum cure time ($t_{min}$), scorch time ($t_2$), and optimal cure time ($t_{90}$) did not show a specific trend according to the DCP contents. For the foaming EVA compounds containing TAC, the cure times decreased as the DCP content increased. From the experimental results, it was found that efficienct DCP/TAC ratio for improvement of the crosslink density was 1.1~2.0.

Study of Non Pressure and Pressure Foam of Bio-based Polymer Containing Blend (바이오 기반 폴리머가 포함된 블렌드의 상압 및 가압 발포 연구)

  • Dong-Hun Han;Young-Min Kim;Danbi Lee;Seongho Son;Geon-hee Seo;Hanseong Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.297-302
    • /
    • 2023
  • There are several methods for shaping foams, but the most commonly used methods involve the use of resin mixed with a foaming agent, which is then foamed under high temperature and pressure in the case of compression foaming, or foamed under high temperature without applying pressure in the case of atmospheric foaming. The polymers used for foaming require design and analysis of optimal foaming conditions in order to achieve foaming under ambient pressure. Environmentally friendly bio-based polymers face challenges when it comes to foaming on their own, which has led to ongoing research in blending them with resins capable of traditional foam production. This study investigates changes in the characteristics of bio-based polymer-EVA blend foams based on variations in the content of bio-based polymers and explores the optimal foaming conditions according to crosslinking. The correlation between foaming characteristics and mechanical properties of the foams was examined. Through this research, we gained insights into how the content of bio-based polymers affects the properties of foams containing bio-based polymers and identified differences between ambient pressure and high-pressure foaming processes. Additionally, the feasibility of commercializing bio-based polymer-EVA composite foams was confirmed.

Analyzing the Effect of Insole Materials on Vibration and Noise Reduction between Floors (층간소음 방지를 위한 인솔 재질별 진동 및 소음 평가)

  • Seungnam Min;Heeran Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.110-122
    • /
    • 2023
  • The COVID-19 pandemic increased people's time at home and caused an 80% increase in noise disputes between floors. The purpose of this study is to propose suitable materials for making indoor shoes (insoles) to minimize noise between floors. Subjects without back pain and leg-related disease (e.g. arthritis, etc.) from three different age groups (childhood, adolescence, and adulthood) were recruited for the study. Five polymer insole materials were considered: Chloroprene Rubber (CR foam), Ethylene Propylene Diene Monomer (EPDM foam), Natural Latex foam, Ethylene Vinyl Acetate (EVA foam), and Polyurethane (PU foam). From these materials, 20 combinations were prepared and randomly tested for noise and vibration. The results revealed a significant difference in noise and vibration levels based on the type of material used and the age of the subject. Nevertheless, all materials under consideration successfully reduced noise and vibration; in particular, type A-C greatly decreased. The CR foam material was especially effective at noise and vibration reduction (p<.01). This study suggests that adding insoles into socks that children wear at home could reduce noise vibration and disputes between floors.

Heat Transfer Depending on 3D Printing Material and Shape for Protector Development (3D 프린팅 보호대 개발을 위한 재료와 구조에 따른 열전달 평가)

  • Okkyung Lee;Soyoung Kim;Yejin Lee;Heeran Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.4
    • /
    • pp.497-507
    • /
    • 2023
  • This study measured the effect 3D printing products comprised of different materials and shapes on heat transfer in clothing to derive fundamental data on thermal comfort among clothing comfort. The variables were three types of material (EVA foam, TPU-10%, TPU-10%+EVA), two types of shape (without holes, with holes), and two types of covers(without cover, with cover). All samples (12 types) prepared by combining these variables were placed on the hot plate set at 36℃, and the surface temperature was measured at three points for 10 minutes. The surface temperature change was dependent on the material, shape, and cover of the sample. The sample printed with TPU exhibited higher temperature transfer compared to the EVA foam sample after 10 mins. In addition, the temperature transfer was better when there were holes, and rate decreased when the sample was covered with fabric. We confirmed that material selection of the pad and thermal conductivity of the cover are extremely important in solving thermal stress to the human body caused by functional clothing with protectors. Additionally, as the protector, it is recommended to design the outer shell with a passage, such as a hole, to allow the rapid transfer of heat to the external environment.

A Study on the Heavy-weight Floor Impact Sound Reduction Evaluation of Characteristics by Resilient Materials (완충재 종류에 따른 중량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Chung, Jin-Yeon;Im, Jung-Bin;Jeong, Gab-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1145-1148
    • /
    • 2007
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS (Styrofoam), recycled urethane types, EVA (Ethylene Vinylacetate) foam rubber, foam PE (Polyethylene), glass fiber & rock wool, recycled tire, foam polypropylene, compressed polyester, and other synthetic materials. In this study, we tested floor impact sound reduction characteristic to a lot of kinds of resilient material. The result of test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

  • PDF

Evaluation of the Light-weight Floor Impact Sound Reduction Characteristics by Types of Resilient Material (완충재 종류에 따른 경량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Chung, Jin-Yeon;Im, Jung-Bin;Jeong, Gab-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.830-834
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS (Styrofoam), recycled urethane types, EVA (Ethylene Vinylacetate) foam rubber, foam PE (Polyethylene), glass fiber & rock wool, recycled tire, foam polypropylene, compressed polyester, and other synthetic materials. In this study, we tested floor impact sound reduction characteristic to a lot of kinds of resilient material. The result of test showed that the amount of the Light-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. As the decreasing dynamic stiffness of resilient material, the impact sound reduction amount is increased, especially in the low frequency domain.

  • PDF

A Study for impact absorption function of midsole in Cushioned Marathon Shoes (충격흡수용 마라톤화(Cushioned Shoes) 개발을 위한 중창·하지의 충격흡수기능 연구 -마라톤화 연구의 과거 & 현재를 중심으로-)

  • Park, Seung-Bum;Seo, Kuk-Woong;Kim, Yong-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.89-114
    • /
    • 2002
  • The purpose of this study was to analyze impact absorption function of midsole in cushioned marathon shoes. The foot is made up of a complex interaction of bones, ligaments, and muscles. These structures help the foot alternate between being a mobile, flexible adaptor and a stable rigid lever. The foot is broken down into two functional parts, the forefoot and the rearfoot. Cushioned marathon shoes for high arches have generous cushioning for efficient and high-mileage runners. Cushioned marathon shoes are made for feet that have high arches or no excessive motion and don't roll inward or roll outward. This condition is known as underpronation. Especially, Cushioned marathon shoes are designed to reduce shock and generally have the softest (or most cushioned) midsoles and the least medial support. They are usually built on a semicurved or curved last to encourage foot motion, which is helpful for underpronators (who have rigid, immobile feet). Cushioning marathon shoes recommended for the high-arched runner, whose foot may roll outward (supinate) rather than the natural slight inward roll, or whose feet may be relatively rigid. Cushioning shoes emphasize flexibility and usually are built on a curved or semicurved last to encourage a normal motion of the foot. Cushioning shoes usually offer no medial (inner foot) support. Cushioned marathon shoes have the single-density midsole, which is stable and relatively firm for a cushioned shoe, stays the same. But the forefoot is more rounded, and the rearfoot now includes a new and supportive rearfoot cradle. A foam midsole, perhaps with layers of different densities, to provide cushioning and shock absorption. EVA (ethylene vinyl acetate) and PU (polyurethane), the materials from which these foams usually are made. EVA is slightly softer than PU. EVA and PU may be layered together in a shoe, or a shoe may have more than one density of EVA.