• 제목/요약/키워드: ERK activation

Search Result 683, Processing Time 0.029 seconds

Requirement of EGF Receptor Kinase for Signaling by Calcium-Induced ERK Activation and Neurite Outgrowth in PC12 Cells

  • Park, Jung-Gyu;Jo, Young-Ah;Kim, Yun-Taik;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.468-474
    • /
    • 1998
  • Membrane depolarization in PC12 cells induces calcium influx via an L-type voltage-sensitive calcium channel (L-VSCC) and increases intracellular free calcium, which leads to tyrosine phosphorylation of epidermal growth factor (EGF) receptor and the associated adaptor protein, She. This activated EGF receptor complex then can activate mitogen-activated protein (MAP) kinase, as in nerve growth factor (NGF) receptor activation. In the present study, we investigated the role of EGF receptor in the signaling pathway initiated by membrane depolarization of PC12 cells. Prolonged membrane depolarization induced phosphorylation of extracellular signal-regulated kinase (ERK) within 1 min in undifferentiated PC12 cells. Pretreatment of PC12 cells with the calcium chelator EGTA abolished depolarization-stimulated ERK phosphorylation, but NGF-induced phosphorylation of ERK was not affected. The chronic treatment of phorbol ester, which down-regulated the activity of protein kinase C (PKC), did not affect the phosphorylation of ERK upon depolarization. In the presence of an inhibitor of EGF receptor, neither depolarization nor calcium ionophore increased the level of ERK phosphorylation. These data imply that the EGF receptor is functionally necessary to activate ERK and neurite outgrowth in response to the prolonged depolarization in PC12 cells, and also that PKC is apparently not involved in this signaling pathway.

  • PDF

Low-dose radiation activates Nrf1/2 through reactive species and the Ca2+/ERK1/2 signaling pathway in human skin fibroblast cells

  • Lee, Eun Kyeong;Kim, Jin-Ah;Park, Seong Joon;Kim, Jeung Ki;Heo, Kyu;Yang, Kwang Mo;Son, Tae Gen
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.258-263
    • /
    • 2013
  • In the current study, we explored the effect of LDR on the activation of Nrfs transcription factor involved in cellular redox events. Experiments were carried out utilizing 0.05 and 0.5 Gy X-ray irradiated normal human skin fibroblast HS27 cells. The results showed LDR induced Nrf1 and Nrf2 activation and expression of antioxidant genes HO-1, Mn-SOD, and NQO1. In particular, 0.05 Gy-irradiation increased only Nrf1 activation, but 0.5 Gy induced both Nrf1 and Nrf2 activation. LDR-mediated Nrf1/2 activation was accompanied by reactive species (RS) generation and $Ca^{2+}$ flux. This effect was abolished in the presence of N-acetyl-cysteine and BAPTA- AM. Furthermore, Nrf1/2 activation by LDR was suppressed by PD98059, an inhibitor of ERK1/2. In conclusion, LDR induces Nrf1 and Nrf2 activation and expression of Nrf-regulated antioxidant defense genes through RS and $Ca^{2+}$/ERK1/2 pathways, suggesting new insights into the molecular mechanism underlying the beneficial role of LDR in HS27 cells.

Inhibitory Effect of Bojungbangam-tang Kakambang on Cisplatin-Induced G2/M Phase Arrest in Human Renal Proximal Tubular HK-2 Cells (보정방암탕가감방(保正防癌湯加減方)이 cisplatin으로 유도된 인간 근위세뇨관 HK-2세포의 G2/M phase arrest에 미치는 영향)

  • Park, Sung-Cheul;Lee, Su-Kyung;Yeom, Seung-Ryong;Kwon, Young-Dal;Song, Yung-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1555-1563
    • /
    • 2007
  • To idenifty effect of Bojungbangam-tang kakambang on Cisplatin-Induced G2/M Phase Arrest in Human Renal Proximal Tubular HK-2 Cells. Cytotoxicity of cisplatin was detected in HK-2 cells and the value of IC50 is about $25\;{\mu}M$. The treatment of cisplatin to HK-2 showed the G2/M phase cell cycle arrest. The ethanol extract of Bojungbangam-tang kakambang (EBTKB), a new herbal prescription composed of ten crude herbs, inhibited cisplatin-induced G2/M phase arrest in HK-2 cells. EBTKB increased G0/G1 peak in cisplatin-treated HK-2 cells. p53, p21 and p27 expression were increased in cisplatin-treated HK-2 cells. Inhibitory effect of EBTKB on cisplatin-induced G2/M phase arrest was accomplished through inhibition of p53, p21 and p27 expression. Also, reduced CDK2 and cyclin A expression by cisplatin were increased by EBTKB, but cyclin E was not changed. Reduction of ERK activation and increment of p38 activation by cisplatin were increased ERK activation and decreased p38 activation by EBTKB. Cisplatin had no effect on JNK activation, but EBTKB increased JNK activation. These results can suggest that EBTKB inhibits cisplatin-induced G2/M phase arrest in HK-2 cell through reduction of p53-dependent p21 and p27 protein, ERK activation and p38 inactivation.

The inhibitory effect on the melanin synthesis in B16/F10 mouse melanoma cells by Sasa quelpaertensis leaf extract (B16/F10 생쥐 흑색종 세포에서 제주조릿대 추출물의 멜라닌 합성 저해 효과)

  • Yoon, Hoon-Seok;Kim, Jeong-Kook;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.873-875
    • /
    • 2007
  • Effects of hot-water extract from Sasa quelpaertensis leaf (HWES) on melanogenesis were investigated in B16/F10 mouse melanoma cells. HWES inhibited cellular tyrosinase activity and melanin biosynthesis in a dose-dependent manner. Western blotting analysis showed that HWES dose-dependently inhibited tyrosinase and tyrosinase related protein-1 expression. Also, HWES suppressed sustained ERK activation in a concentration-dependent manner, suggesting that HWES inhibits the melanin biosynthesis through the suppressive effect against pathway involving sustained ERK activation.

Hydrogen Peroxide Activates ERK in Cultured Feline Ileal Smooth Muscle Cells

  • Song, Hyun-Ju;Lee, Tai-Sang;Jeong, Ji-Hoon;Park, Joon-Hong;Choi, Tae-Sik;Lee, Doo-Won;Sohn, Uy-Dong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.242.1-242.1
    • /
    • 2002
  • H$_2$O$_2$ has been shown to act as a signaling molecule involved in many cellular functions such as oxidant-induced stress, apoptosis, proliferation. In this study, we investigated the action mechanisms of H$_2$O$_2$ on activation of Extracellular Signal-Regulated Protein Kinase(ERK) in cultured feline ileal smooth muscle cells(ISMC). Western blot analysis done with phospho-specific MAP kinases antibodies demonstrated that potent activation of ERK and moderate activation of SAPK/JNK occurred within 30 min of H$_2$O$_2$ treatment. (omitted)

  • PDF

Protease-activated Receptor 2 is Associated with Activation of Human Macrophage Cell Line THP-1

  • Kang, Chon-Sik;Tae, Jin;Lee, Young-Mi;Kim, Byeong-Soo;Moon, Woo-Sung;Kim, Dae-Ki
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.193-198
    • /
    • 2005
  • Background: Protease-activated receptor 2 (PAR2) belongs to a family of G protein coupled receptors activated by proteolytic cleavage. Trypsin-like serine proteases interact with PAR2 expressed by a variety of tissues and immune cells. The aim of our study was to investigate whether PAR2 stimulation can lead to the activation of human mac rophages. Methods: PAR2-mediated proliferation of human macrophage cell line THP-1 was measured with MTT assay. We also examined the extracellular regulated kinase (ERK) phosphorylation and cytokine production induced by trypsin and PAR2-agonist using western blot and enzyme-linked immunosorbent assay (ELISA), respectively. Results: Treatment of trypsin or PAR2-activating peptide increased cell proliferation in a dose-dependent manner, and induced the activation of ERK1/2 in THP-1 cells. In addition, trypsin-induced cell proliferation was inhibited by pretreatment of an ERK inhibitor (pD98059) or trypsin inhibitor (SBTI). Moreover, PAR2 activation by trypsin increased the secretion of TNF-${\alpha}$ in THP-1 cells. Conclusion: There results suggest that P AR2 activation by trypsin-like serine proteases can induce cell proliferation through the activation of ERK in human macrophage and that PAR2 may playa crucial role in the cell proliferation and cytokine secretion induced by trypsin-like serine proteases.

Sustained Intracellular Acidosis Triggers the Na+/H+ Exchager-1 Activation in Glutamate Excitotoxicity

  • Lee, Bo Kyung;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.593-598
    • /
    • 2017
  • The $Na^+/H^+$ exchanger-1 (NHE-1) is a ubiquitously expressed pH-regulatory membrane protein that functions in the brain, heart, and other organs. It is increased by intracellular acidosis through the interaction of intracellular $H^+$ with an allosteric modifier site in the transport domain. In the previous study, we reported that glutamate-induced NHE-1 phosphorylation mediated by activation of protein kinase C-${\beta}$ (PKC-${\beta}$) in cultured neuron cells via extracellular signal-regulated kinases (ERK)/p90 ribosomal s6 kinases (p90RSK) pathway results in NHE-1 activation. However, whether glutamate stimulates NHE-1 activity solely by the allosteric mechanism remains elusive. Cultured primary cortical neuronal cells were subjected to intracellular acidosis by exposure to $100{\mu}M$ glutamate or 20 mM $NH_4Cl$. After the desired duration of intracellular acidosis, the phosphorylation and activation of PKC-${\beta}$, ERK1/2 and p90RSK were determined by Western blotting. We investigated whether the duration of intracellular acidosis is controlled by glutamate exposure time. The NHE-1 activation increased while intracellular acidosis sustained for >3 min. To determine if sustained intracellular acidosis induced NHE-1 phosphorylation, we examined phosphorylation of NHE-1 induced by intracellular acidosis by transient exposure to $NH_4Cl$. Sustained intracellular acidosis led to activation and phosphorylation of NHE-1. In addition, sustained intracellular acidosis also activated the PKC-${\beta}$, ERK1/2, and p90RSK in neuronal cells. We conclude that glutamate stimulates NHE-1 activity through sustained intracellular acidosis, which mediates NHE-1 phosphorylation regulated by PKC-${\beta}$/ERK1/2/p90RSK pathway in neuronal cells.

The effects of Caffeoylserotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells

  • Kim, Hye-Eun;Ishihara, Atsushi;Lee, Seong-Gene
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.724-729
    • /
    • 2012
  • In this study, we evaluated the anti-melanogenesis effects of Caffeoylserotonin (CaS) in B16 melanoma cells. Treatment with CaS reduced the melanin content and tyrosinase (TYR) activity in B16 melanoma cells in a dose-dependent manner. CaS inhibited the expression of melanogenesis-related proteins, including microphthalmia-associated transcription factor (MITF), TYR, and tyrosinase-related protein-1 (TRP-1), but not TRP-2. ${\alpha}$-MSH is known to interact with melanocortin 1 receptor (MC1R) thus activating adenylyl cyclase and increasing intracellular cyclic AMP (cAMP) levels. Furthermore, cAMP activates extracellular signal-regulated kinase 2 (ERK2) via phosphorylation, which phosphorylates MITF, thereby targeting the transcription factor to proteasomes for degradation. The CaS reduced intracellular cAMP levels to unstimulated levels and activated ERK phosphorylation within 30 min. The ERK inhibitor PD98059 abrogated the suppressive effect of CaS on ${\alpha}$-MSH-induced melanogenesis. Based on this study, the inhibitory effects of CaS on melanogenesis are derived from the downregulation of MITF signaling via the inhibition of intracellular cAMP levels, as well as acceleration of ERK activation.

The Effect of Betulinic Acid on $TNF-{\alpha}-induced$ MCP-1 Expression in HL-60 Cells (HL-60 세포에서 $TNF-{\alpha}$에 의한 MCP-1 발현에 미치는 Betulinic Acid의 효과)

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.37-42
    • /
    • 2008
  • Betulinic acid, a naturally occurring pentacyclic triterpenoid, is found in abundance in the outer bark of white birch (Betula alba). In this study, we investigated if betulinic acid affects cytokine expression from activated macrophage cells. ELISA result showed that stimulation of HL-60 cells with proinflammatory cytokine such as $TNF-{\alpha}$ resulted in MCP-1 release into culture medium. In addition, transcriptional upregulation of MCP-1 in response to $TNF-{\alpha}$ was observed by RT-PCR analysis. However, incubation of HL-60 cells with betulinic acid prior to $TNF-{\alpha}$ treatment abrogated MCP-1 expression in transcription and translational level. Consistent with a number of studies which reported requirement of ERK activation for $TNF-{\alpha}$ expression, Western blot analysis showed that $TNF-{\alpha}-induced$ ERK activation was suppressed by pretreatment of HL-60 cells with betulinic acid. Taken together, our data indicate that betulinic acid exerts its anti-inflammatory effect through inhibition of $TNF-{\alpha}-induced$ ERK activation which is required for the subsequent MCP-1 release.

Domperidone, a Dopamine Receptor D2 Antagonist, Induces Apoptosis by Inhibiting the ERK/STAT3-Mediated Pathway in Human Colon Cancer HCT116 Cells

  • So Jin Sim;Jeong-Hoon Jang;Joon-Seok Choi;Kyung-Soo Chun
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.568-576
    • /
    • 2024
  • Colorectal cancer (CRC) continues to demonstrate high incidence and mortality rates, emphasizing that implementing strategic measures for prevention and treatment is crucial. Recently, the dopamine receptor D2 (DRD2), a G protein-coupled receptor, has been reported to play multiple roles in growth of tumor cells. This study investigated the anticancer potential of domperidone, a dopamine receptor D2 antagonist, in HCT116 human CRC cells. Domperidone demonstrated concentration- and time-dependent reductions in cell viability, thereby inducing apoptosis. The molecular mechanism revealed that domperidone modulated the mitochondrial pathway, decreasing mitochondrial Bcl-2 levels, elevating cytosolic cytochrome C expression, and triggering caspase-3, -7, and -9 cleavage. Domperidone decreased in formation of β-arrestin2/MEK complex, which contributing to inhibition of ERK activation. Additionally, treatment with domperidone diminished JAK2 and STAT3 activation. Treatment of U0126, the MEK inhibitor, resulted in reduced phosphorylation of MEK, ERK, and STAT3 without alteration of JAK2 activation, indicating that domperidone targeted both MEK-ERK-STAT3 and JAK2-STAT3 signaling pathways. Immunoblot analysis revealed that domperidone also downregulated DRD2 expression. Domperidone-induced reactive oxygen species (ROS) generation and N-acetylcysteine treatment mitigated ROS levels and restored cell viability. An in vivo xenograft study verified the significant antitumor effects of domperidone. These results emphasize the multifaceted anticancer effects of domperidone, highlighting its potential as a promising therapeutic agent for human CRC.