• Title/Summary/Keyword: ERK activation

Search Result 690, Processing Time 0.034 seconds

Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling

  • Wang, Yuli;Ma, Junchi;Du, Yifei;Miao, Jing;Chen, Ning
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.186-194
    • /
    • 2016
  • Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs significantly promoted the proliferation and osteoblastic differentiation of $H_2O_2$-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.

Induction of Integrin Signaling by Steroid Sulfatase in Human Cervical Cancer Cells

  • Ye, Dong-Jin;Kwon, Yeo-Jung;Shin, Sangyun;Baek, Hyoung-Seok;Shin, Dong-Won;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.321-328
    • /
    • 2017
  • Steroid sulfatase (STS) is an enzyme responsible for the hydrolysis of aryl and alkyl sulfates. STS plays a pivotal role in the regulation of estrogens and androgens that promote the growth of hormone-dependent tumors, such as those of breast or prostate cancer. However, the molecular function of STS in tumor growth is still not clear. To elucidate the role of STS in cancer cell proliferation, we investigated whether STS is able to regulate the integrin signaling pathway. We found that overexpression of STS in HeLa cells increases the protein and mRNA levels of integrin ${\beta}1$ and fibronectin, a ligand of integrin ${\alpha}5{\beta}1$. Dehydroepiandrosterone (DHEA), one of the main metabolites of STS, also increases mRNA and protein expression of integrin ${\beta}1$ and fibronectin. Further, STS expression and DHEA treatment enhanced phosphorylation of focal adhesion kinase (FAK) at the Tyr 925 residue. Moreover, increased phosphorylation of ERK at Thr 202 and Tyr 204 residues by STS indicates that STS activates the MAPK/ERK pathway. In conclusion, these results suggest that STS expression and DHEA treatment may enhance MAPK/ERK signaling through up-regulation of integrin ${\beta}1$ and activation of FAK.

p38 MAPK Signaling Mediates Mitochondrial Apoptosis in Cancer Cells Induced by Oleanolic Acid

  • Liu, Jia;Wu, Ning;Ma, Lei-Na;Zhong, Jia-Teng;Liu, Ge;Zheng, Lan-Hong;Lin, Xiu-Kun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4519-4525
    • /
    • 2014
  • Oleanolic acid (OA) is a nutritional component widely distributed in various vegetables. Although it has been well recognized for decades that OA exerts certain anti-tumor activity by inducing mitochondria-dependent apoptosis, it is still unclear that what molecular signaling is responsible for this effect. In this study, we employed cancer cell lines, A549, BXPC-3, PANC-1 and U2OS to elucidate the molecular mechanisms underlying OA anti-tumor activity. We found that activation of MAPK pathways, including p-38 MAPK, JNK and ERK, was triggered by OA in both a dose and time-dependent fashion in all the tested cancer cells. Activation was accompanied by cleavage of caspases and PARP as well as cytochrome C release. SB203580 (p38 MAPK inhibitor), but not SP600125 (JNK inhibitor) and U0126 (ERK inhibitor), rescued the pro-apoptotic effect of OA on A549 and BXPC-3 cells. OA induced p38 MAPK activation promoted mitochondrial translocation of Bax and Bim, and inhibited Bcl-2 function by enhancing their phosphorylation. OA can induce reactive oxygen species (ROS)-dependent ASK1 activation, and this event was indispensable for p38 MAPK-dependent apoptosis in cancer cells. In vivo, p38 MAPK knockdown A549 tumors proved resistant to the growth-inhibitory effect of OA. Collectively, we elucidated that activation of ROS/ASK1/p38 MAPK pathways is responsible for the apoptosis stimulated by OA in cancer cells. Our finding can contribute to a better understanding of molecular mechanisms underlying the antitumor activity of nutritional components.

The Inhibitory Effects of Alnus Japonica Steud. Extract on Melanogenesis (적양 추출물의 멜라닌 합성 저해효과)

  • Lee, Jun Young;Im, Kyung Ran;Jung, Taek Kyu;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.2
    • /
    • pp.159-166
    • /
    • 2013
  • In order to develop new skin whitening agents, we prepared the EtOAc layer (AJE) after enzyme treatment of 75% EtOH extract of the Alnus Japonica Steud. We measured their tyrosinase inhibitory activity in vitro and melanin synthesis inhibitory activity in B16-F1 melanoma cells. They did not show inhibitory activity against mushroom tyrosinase but showed melanin synthesis inhibitory activity in a dose-dependent manner. In a melanin synthesis inhibition assay, AJE suppressed melanin production up to 52% at a concentration of $40{\mu}g/mL$. To elucidate the mechanism of the inhibitory effects of AJE on melanogenesis, we measured expression of melanogenesis-related proteins by the western blot assay. As a result, AJE suppressed the expression of tyrosinase related protein 1 (TRP-1) and microphthalmia associated transcription factor (MITF). Moreover, AJE increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). These results conclude that ERK activation by AJE reduces melanin synthesis via MITF downregulation and is subsequent to the inhibition of TRP-1 expression. Therefore, we suggest that AJE could be used as active ingredients for skin whitening.

Inhibition of ERK1/2 Activation and Cytoskeleton Rearrangement by the Recombinant Protein of Plasminogen Kringle 5 (Plasminogen kringle 5 재조합 단백질에 의한 ERK1/2 활성화 및 세포골격 재배열 억제)

  • Ha, Jung-Min;Kim, Hyun-Kyung;Kim, Myoung-Rae;Joe, Young-Ae
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1199-1206
    • /
    • 2006
  • Plasminogen kringle 5 is a potent inhibitor of endothelial tell proliferation like an endogenous angiogenesis inhibitor, angiostatin consisting of plasminogen kringles 1-4. In this study, we produced the recombinant protein of plasminogen kringle 5 (PK5) employing an Pichia expression system and examined its. effect on~endothelial cell migration and its possible inhibitory mechanism. PK5 was expressed in Pichia pastoris GS115 by fusion of the cDNA spanning from Thr456 to Phe546 to the secretion signal sequence of a-factor prepro-peptide. After methanol induction, the secreted PK5 was purified by using S-spin column. SDS-PACE analysis of the purified protein showed one major band of approximately 10kDa. In in vitro migration assays, the purified protein inhibited dose-dependently the migration of human umbilical endothelial cells (HUVECs) induced by basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) with an $IC_{50}$ of approximately 500nM. Accordingly, it inhibited bfGF-stimulated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in HUVECs at 500nM. In addition, it also potently inhibited bFGF-induced cytoskeletal rearrangement of HUVECs. Thus, these results suggest that Pichia-produced PK5 effectively inhibits endothelial cell migration, in part by suppression of ERK1/2 activation and blocking cytoskeleton rearrangement.

Smads, p38 and ERK1/2 are involved in BMP9-induced osteogenic differentiation of C3H10T1/2 mesenchymal stem cells

  • Xu, Dao-Jing;Zhao, Ying-Ze;Wang, Jin;He, Juan-Wen;Weng, Ya-Guang;Luo, Jin-Yong
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.247-252
    • /
    • 2012
  • Although previous studies have demonstrated that BMP9 is highly capable of inducing osteogenic differentiation of mesenchymal stem cells, the molecular mechanism involved remains to be fully elucidated. In this study, we showed that BMP9 simultaneously promotes the activation of Smad1/5/8, p38 and ERK1/2 in C3H10T1/2 cells. Knockdown of Smad4 with RNA interference reduced nuclear translocation of Smad1/5/8, and disrupted BMP9-induced osteogenic differentiation. BMP9-induced osteogenic differentiation was blocked by p38 inhibitor SB203580, whereas enhanced by ERK1/2 inhibitor PD98059. SB203580 decreased BMP9-activated Smads singling, and yet PD98059 stimulated Smads singling in C3H10T1/2 cells. The effects of inhibitor were reproduced with adenovirus expressing siRNA targeted p38 and ERK1/2, respectively. Taken together, our findings revealed that Smads, p38 and ERK1/2 are involved in BMP9-induced osteogenic differentiation. Also, it is noteworthy that p38 and ERK1/2 may play opposing regulatory roles in mediating BMP9-induced osteogenic differentiation of C3H10T1/2 cells.

Inhibitory effects of ginsenosides on basic fibroblast growth factor-induced melanocyte proliferation

  • Lee, Ji Eun;Park, Jong Il;Myung, Cheol Hwan;Hwang, Jae Sung
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.268-276
    • /
    • 2017
  • Background: UV-B-exposed keratinocytes secrete various paracrine factors. Among these factors, basic fibroblast growth factor (bFGF) stimulates the proliferation of melanocytes. Ginsenosides, the major active compounds of ginseng, are known to have broad pharmacological effects. In this study, we examined the antiproliferative effects of ginsenosides on bFGF-induced melanocyte proliferation. Methods: We investigated the inhibitory effects of Korean Red Ginseng and ginsenosides from Panax ginseng on bFGF-induced proliferation of melan-a melanocytes. Results: When melan-a melanocytes were treated with UV-B-irradiated SP-1 keratinocytes media, cell proliferation increased. This increased proliferation of melanocytes decreased with a neutralizing anti-bFGF antibody. To elucidate the effects of ginsenosides on melanocyte proliferation induced by bFGF, we tested 15 types of ginsenoside compounds. Among them, Rh3, Rh1, F1, and CK demonstrated antiproliferative effects on bFGF-induced melanocyte proliferation after 72 h of treatment. bFGF stimulated cell proliferation via extracellular signal-regulated kinase (ERK) activation in various cell types. Western blot analysis found bFGF-induced ERK phosphorylation in melan-a. Treatment with Rh3 inhibited bFGF-induced maximum ERK phosphorylation and F1-delayed maximum ERK phosphorylation, whereas Rh1 and CK had no detectable effects. In addition, cotreatment with Rh3 and F1 significantly suppressed bFGF-induced ERK phosphorylation. Western blot analysis found that bFGF increased microphthalmia-associated transcription factor (MITF) protein levels in melan-a. Treatment with Rh3 or F1 had no detectable effects, whereas cotreatment with Rh3 and F1 inhibited bFGF-induced MITF expression levels more strongly than a single treatment. Conclusion: In summary, we found that ginsenosides Rh3 and F1 have a synergistic antiproliferative effect on bFGF-induced melan-a melanocyte proliferation via the inhibition of ERK-mediated upregulation of MITF.

Anthocyanins from Hibiscus Syriacus Inhibit Melanogenesis by Activating the ERK Signaling Pathway

  • Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Molagoda, Ilandarage Menu Neelaka;Park, Sang Rul;Kim, Jeong Woon;Lee, Oh-Kyu;Kwon, Hae Yun;Oren, Matan;Choi, Yung Hyun;Ryu, Hyung Won;Oh, Sei-Ryang;Jo, Wol Soon;Lee, Kyoung Tae;Kim, Gi-Young
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.90-90
    • /
    • 2019
  • Hibiscus syriacus exhibited promising potential as a new source of food and colorants containing various anthocyanins. However, the function of anthocyanins from H. syriacus has not been investigated. In the current study, we evaluated whether anthocyanins from the H. syriacus varieties Pulsae and Paektanshim (PS and PTS) inhibit melanin biogenesis. B16F10 cells and zebrafish larvae were exposed to PS and PTS in the presence or absence of ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH), and melanin contents accompanied by its regulating genes and proteins were analyzed. PS and PTS moderately downregulated mushroom tyrosinase activity in vitro, but significantly decreased extracellular and intracellular melanin production in B16F10 cells, and inhibited ${\alpha}$-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. PS and PTS also attenuated pigmentation in ${\alpha}$-MSH-stimulated zebrafish larvae. Furthermore, PS and PTS activated the phosphorylation of extracellular signal-regulated kinase (ERK), whereas PD98059, a specific ERK inhibitor, completely reversed PS- and PTS-mediated anti-melanogenic activity in B16F10 cells and zebrafish larvae, which indicates that PS- and PTS-mediated anti-melanogenic activity is due to ERK activation. Moreover, chromatography data showed that PS and PTS possessed 17 identical anthocyanins as a negative regulator of ERK. These findings suggested that anthocyanins from PS and PTS inhibited melanogenesis in vitro and in vivo by activating the ERK signaling pathway.

  • PDF