• Title/Summary/Keyword: ER-stress

Search Result 358, Processing Time 0.022 seconds

Characterization of Tunicamycin as Anti-obesity Agent

  • Song, Ha-Suk;Kim, Hye-Min;Jung, Sook-Yung;Lee, Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 2009
  • Adipocytes undergo adipocyte stress in the excessive presence of lipid. Adipocyte stress accompanies the typical signs of endoplasmic reticulum (ER) stress: unfolded protein response and overexpression of molecular chaperones. Apoptotic induction in adipocytes is known as a good strategy for treating obesity. The drug "tunicamycin" was tested for its therapeutic potential in inducing apoptosis on differentiating adipocytes of 3T3-L1. When the 3T3-L1 cells, stimulated for adipogenesis, were treated with tunicamycin, they showed typical ER stress symptoms. Despite progression in ER stress, however, the differentiated 3T3-L1 hardly proceeded to apoptosis based on the CHOP protein expression and FACS analysis. This is very different from C2C12, the myogenic counterpart of 3T3-L1, which showed significant apoptosis along with ER stress. This study also characterizes a potential mechanism whereby adipocyte may avoid apoptosis to sustain the pathological state of obesity. The level of GRP94 expression significantly upholds in 3T3-L1 under tunicamycin treatment compared to preadipocytes and C2C-12. When GRP94 expression was inhibited by siRNA, 3T3-L1 showed a higher level of CHOP expression compared to C2C12 cells. In conclusion, adipocytes exert an anti-apoptotic mechanism under ER stress caused by tunicamycin; thus, apoptotic induction in adipocyte is not a viable anti-obesity option. The unusual level of GRP94 may serve as a key role whereby adipocytes reach to the obesity level circumventing the apoptosis.

Fat Mass and Obesity-Associated (FTO) Stimulates Osteogenic Differentiation of C3H10T1/2 Cells by Inducing Mild Endoplasmic Reticulum Stress via a Positive Feedback Loop with p-AMPK

  • Son, Hyo-Eun;Min, Hyeon-Young;Kim, Eun-Jung;Jang, Won-Gu
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.58-65
    • /
    • 2020
  • Fat mass and obesity-associated (FTO) gene helps to regulate energy homeostasis in mammals by controlling energy expenditure. In addition, FTO functions in the regulation of obesity and adipogenic differentiation; however, a role in osteogenic differentiation is unknown. This study investigated the effects of FTO on osteogenic differentiation of C3H10T1/2 cells and the underlying mechanism. Expression of osteogenic and endoplasmic reticulum (ER) stress markers were characterized by reverse-transcriptase polymerase chain reaction and western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity. BMP2 treatment increased mRNA expression of osteogenic genes and FTO. Overexpression of FTO increased expression of the osteogenic genes distal-less homeobox5 (Dlx5) and runt-related transcription factor 2 (Runx2). Activation of adenosine monophosphate-activated protein kinase (AMPK) increased FTO expression, and there was a positive feedback loop between FTO and p-AMPK. p-AMPK and FTO induced mild ER stress; however, tunicamycin-induced severe ER stress suppressed FTO expression and AMPK activation. In summary, FTO induces osteogenic differentiation of C3H10T1/2 cells upon BMP2 treatment by inducing mild ER stress via a positive feedback loop with p-AMPK. FTO expression and AMPK activation induce mild ER stress. By contrast, severe ER stress inhibits osteogenic differentiation by suppressing FTO expression and AMPK activation.

Apparent Viscosity Properties of Electro-Rheological Fluid by Using Rotational Viscometer (회전식 점도계를 이용한 ERF의 겉보기 점도 특성)

  • 장성철;이진우;김태형;박종근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.196-201
    • /
    • 2001
  • Electro-Rheological(ER) fluids change their apparent viscosity according to the electric field strength. Therefore, there are many practical applications using the ER fluids. ER effect on the dispersive system of polarizable fine powder/dielectric oil has been investigated. The electrical and rheological properties of starch based ER fluid were reported. Yield stress of the fluids were measured on the couette cell type rheometer as a function of electric fields, particle concetrations, and temperatures. The electric field is applied by high voltage DC power supply, The outer cup is connected to positive electrode(+) and the bob becomes ground(-). And the temperatures the viscosity(or shear stress) versus shear rates were measured. In this experiment shear rates were increased from 0 to 200s$^{-1}$ in 2 minutes. This thesis presents Bingham properties of ER fluids subjected to temperature variations. The temperature dependence of the viscosity was determined for ER fluids consisting of 35 weight % starch particles in automatic transmission oil.

  • PDF

Electrorheology of HMDA Coupled Chitosan Succinate Suspension as an Anhydrous ER Fluid

  • Kong, Seong-Wook;Kim, Seung-Wook;Lee, Sang-Soon;Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.7-9
    • /
    • 2008
  • The electrorheology of the HMDA coupled chitosan succinate suspension in silicone oil was investigated. HMDA coupled chitosan succinate suspension showed a typical ER response upon application of an electric field. The shear stress for the HMDA coupled chitosan succinate suspension exhibited an electric field power of 2.0. The experimental results for the HMDA coupled chitosan succinate suspension was found to be an anhydrous ER fluid.

A Study on the Ultraprecision Polishing of Single Crystal Silicon using Electrorheolgical Fluids. (전기점성유체를 이용한 단결정 실리콘의 초정밀 연마에 관한 연구)

  • 박성준;이성재;김욱배;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.27-36
    • /
    • 2003
  • The Electro-Rheological (ER) fluid has been used to the ultraprecision polishing of single crystal silicon as new polishing slurry whose properties such as yield stress and particle structure changed with the application of an electric field. In this work, it is aimed to find the effective parameters in the ER fluid on material removal in the polishing system whose structure is similar to that of the simple hydrodynamic bearing. The generated pressure in the gap between a moving wall and a workpiece, as well as the electric field-induced stress of the mixture of ER fluid-abrasives, is evaluated experimentally, and their influence on the polishing of single crystal silicon is analyzed. Moreover, the behavior of abrasive and ER particles is described.

Understanding the Unfolded Protein Response (UPR) Pathway: Insights into Neuropsychiatric Disorders and Therapeutic Potentials

  • Pitna Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.183-191
    • /
    • 2024
  • The Unfolded Protein Response (UPR) serves as a critical cellular mechanism dedicated to maintaining protein homeostasis, primarily within the endoplasmic reticulum (ER). This pathway diligently responds to a variety of intracellular indicators of ER stress with the objective of reinstating balance by diminishing the accumulation of unfolded proteins, amplifying the ER's folding capacity, and eliminating slow-folding proteins. Prolonged ER stress and UPR irregularities have been linked to a range of neuropsychiatric disorders, including major depressive disorder, bipolar disorder, and schizophrenia. This review offers a comprehensive overview of the UPR pathway, delineating its activation mechanisms and its role in the pathophysiology of neuropsychiatric disorders. It highlights the intricate interplay within the UPR and its profound influence on brain function, synaptic perturbations, and neural developmental processes. Additionally, it explores evolving therapeutic strategies targeting the UPR within the context of these disorders, underscoring the necessity for precision and further research to effective treatments. The research findings presented in this work underscore the promising potential of UPR-focused therapeutic approaches to address the complex landscape of neuropsychiatric disorders, giving rise to optimism for improving outcomes for individuals facing these complex conditions.

Intestine Ischemia/reperfusion Induces ER Stress and Apoptosis in Miniature Pigs

  • Lim, Jae-Cheong;Han, Ho-Jae;Park, Soo-Hyun
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.359-363
    • /
    • 2010
  • The miniature pig is a very suitable donor species in xenotransplantation of human organs. Intestine ischemia/reperfusion (I/R) is associated with high morbidity and mortality. Endoplasmic reticulum (ER) stress and apoptosis has been associated with the onset of diverse diseases. Thus, we examined the effect of intestine I/R on the expression of ER stress and apotptosis related molecules. In the present study, I/R induced phosphorylation of protein kinase-like endoplasmic reticulum kinase (PERK), IRE, and ATF-4. I/R also increased the expression of the proapoptotic transcription factor CAAT/enhancer-binding protein homologous protein (CHOP). In addition, I/R decreased the expression of Bcl-2, but increased the expression of Bax, cleaved PARP, and cleaved caspase-3. Moreover, I/R increased splicing form of XBP-1 mRNA and the expression of caspase-6 and caspase-3 mRNA. In conclusion, intestine I/R induced ER stress and apoptosis in miniature pig.

Temperature-Viscosity Characteristics of Hydrous and Anhydrous Electro-Rheological Fluids (함수계와 비수계 ER유체의 온도-점도 특성)

  • 이진우;장성철;염만오;김도태;박재범
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.451-456
    • /
    • 2002
  • This paper describes the properties of Temperature-Viscosity characteristics of hydrous and anhydrous ER fluids containing starch and titanium particle in silicone oil. ER effects arise from electrostatic forces between the starch particles and titanium particles dispersed in the electrically insulating silicone oil induced when electric field is applied. ER fluids under electric field have been found to provide resonable estimates of ER fluid viscosity variation characteristics. Yield shear stress of the ER fluids were measured on the couette cell type rheometer as a function of electric fields. The outer cup is connected to positive electrode(+) and bob becomes ground(-). The electric field is applied by high voltage DC power supply. In this experiment shear rates were increased from 0 to 200/equation omitted/ in 2 minutes.

  • PDF

Durability Estimation for ER Fluids of Methyl Cellulose Component in Smart Hydraulic Systems (지능형 유압시스템을 위한 메틸 셀루로이즈 성분 ER 유체의 내구성 평가)

  • 김옥삼;박우철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1211-1219
    • /
    • 2001
  • The electro-rheological(ER) fluids for smart hydraulic system are a class of colloidal dispersion which exhibit large reversible Changes in their rheological behavior when they are subjected to external electrical fields. This paper presents experimental results on material properties of an ER fluids subjected to electrical fatigues. As a first step, ER fluid is made of methyl cellulose(MC) choosing 25% of particle weight-concentration. Following the construction of test mechanism for durability estimation, the dynamic yield shear stress and the current density for the ER fluids of MC component are experimentally distilled as a function of electric field. In addition, the surface roughness of the employed electrode are evaluated as a function of the number of the electric-field cycles.

  • PDF

Characteristic Experiment of a Hydraulic Control Valve by Using Electro-Rheological Fluid (ERF를 이용한 유압제어밸브의 특성실험)

  • Kim, Dong-Su;Park, Jae-Beom;Jang, Seong-Cheol
    • 연구논문집
    • /
    • s.30
    • /
    • pp.93-99
    • /
    • 2000
  • Electro-Rheological(ER) fluids change their apparent viscosity according to the electric field strength. The electrical and rheological properties of zeolite based the ER fluids were reported. The electric field dependent yield stress are obtained from experimental investigation on the Bingham property of the ER fluid. Using ER fluids, it is possible to directly interface between electric drop and flow rate of the ER fluid was hydraulic control valve measured under application of an electric field. The purpose of the present study is pressure drop measurement of an ER valve by using strain gage. The performance characteristics of the valve system are evalusted in terms of pressrue fixed with respect to the intensity of employed electric fields and flow rates. As a result, it is esperimentally confirmed that pressure control valve using ER fluids applicable to use in hydraulic power systems.

  • PDF