DOI QR코드

DOI QR Code

Fat Mass and Obesity-Associated (FTO) Stimulates Osteogenic Differentiation of C3H10T1/2 Cells by Inducing Mild Endoplasmic Reticulum Stress via a Positive Feedback Loop with p-AMPK

  • Son, Hyo-Eun (Department of Biotechnology, School of Engineering, Daegu University) ;
  • Min, Hyeon-Young (Department of Biotechnology, School of Engineering, Daegu University) ;
  • Kim, Eun-Jung (Research Institute of AntiAging, Daegu University) ;
  • Jang, Won-Gu (Department of Biotechnology, School of Engineering, Daegu University)
  • Received : 2019.06.18
  • Accepted : 2019.12.05
  • Published : 2020.01.31

Abstract

Fat mass and obesity-associated (FTO) gene helps to regulate energy homeostasis in mammals by controlling energy expenditure. In addition, FTO functions in the regulation of obesity and adipogenic differentiation; however, a role in osteogenic differentiation is unknown. This study investigated the effects of FTO on osteogenic differentiation of C3H10T1/2 cells and the underlying mechanism. Expression of osteogenic and endoplasmic reticulum (ER) stress markers were characterized by reverse-transcriptase polymerase chain reaction and western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity. BMP2 treatment increased mRNA expression of osteogenic genes and FTO. Overexpression of FTO increased expression of the osteogenic genes distal-less homeobox5 (Dlx5) and runt-related transcription factor 2 (Runx2). Activation of adenosine monophosphate-activated protein kinase (AMPK) increased FTO expression, and there was a positive feedback loop between FTO and p-AMPK. p-AMPK and FTO induced mild ER stress; however, tunicamycin-induced severe ER stress suppressed FTO expression and AMPK activation. In summary, FTO induces osteogenic differentiation of C3H10T1/2 cells upon BMP2 treatment by inducing mild ER stress via a positive feedback loop with p-AMPK. FTO expression and AMPK activation induce mild ER stress. By contrast, severe ER stress inhibits osteogenic differentiation by suppressing FTO expression and AMPK activation.

Keywords

References

  1. Canalis, E., Economides, A.N., and Gazzerro, E. (2003). Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24, 218-235. https://doi.org/10.1210/er.2002-0023
  2. Fischer, J., Koch, L., Emmerling, C., Vierkotten, J., Peters, T., Bruning, J.C., and Ruther, U. (2009). Inactivation of the Fto gene protects from obesity. Nature 458, 894-898. https://doi.org/10.1038/nature07848
  3. Frayling, T.M., Timpson, N.J., Weedon, M.N., Zeggini, E., Freathy, R.M., Lindgren, C.M., Perry, J.R., Elliott, K.S., Lango, H., Rayner, N.W., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889-894. https://doi.org/10.1126/science.1141634
  4. Gething, M.J. and Sambrook, J. (1992). Protein folding in the cell. Nature 355, 33-45. https://doi.org/10.1038/355033a0
  5. Ghemrawi, R., Battaglia-Hsu, S.F., and Arnold, C. (2018). Endoplasmic reticulum stress in metabolic disorders. Cells 7, E63. https://doi.org/10.3390/cells7060063
  6. Guo, J., Ren, W., Li, A., Ding, Y., Guo, W., Su, D., Hu, C., Xu, K., Chen, H., Xu, X., et al. (2013). Fat mass and obesity-associated gene enhances oxidative stress and lipogenesis in nonalcoholic fatty liver disease. Dig. Dis. Sci. 58, 1004-1009. https://doi.org/10.1007/s10620-012-2516-6
  7. Guo, Y., Liu, H., Yang, T.L., Li, S.M., Li, S.K., Tian, Q., Liu, Y.J., and Deng, H.W. (2011). The fat mass and obesity associated gene, FTO, is also associated with osteoporosis phenotypes. PLoS One 6, e27312. https://doi.org/10.1371/journal.pone.0027312
  8. Jang, H., Kim, E.J., Park, J.K., Kim, D.E., Kim, H.J., Sun, W.S., Hwang, S., Oh, K.B., Koh, J.T., Jang, W.G., et al. (2014). SMILE inhibits BMP-2-induced expression of osteocalcin by suppressing the activity of the RUNX2 transcription factor in MC3T3E1 cells. Bone 61, 10-18. https://doi.org/10.1016/j.bone.2013.12.028
  9. Jang, W.G., Kim, E.J., Kim, D.K., Ryoo, H.M., Lee, K.B., Kim, S.H., Choi, H.S., and Koh, J.T. (2012). BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J. Biol. Chem. 287, 905-915. https://doi.org/10.1074/jbc.M111.253187
  10. Jang, W.G., Kim, E.J., and Koh, J.T. (2011a). Tunicamycin negatively regulates BMP2-induced osteoblast differentiation through CREBH expression in MC3T3E1 cells. BMB Rep. 44, 735-740. https://doi.org/10.5483/BMBRep.2011.44.11.735
  11. Jang, W.G., Kim, E.J., Lee, K.N., Son, H.J., and Koh, J.T. (2011b). AMP-activated protein kinase (AMPK) positively regulates osteoblast differentiation via induction of Dlx5-dependent Runx2 expression in MC3T3E1 cells. Biochem. Biophys. Res. Commun. 404, 1004-1009. https://doi.org/10.1016/j.bbrc.2010.12.099
  12. Javed, A., Bae, J.S., Afzal, F., Gutierrez, S., Pratap, J., Zaidi, S.K., Lou, Y., van Wijnen, A.J., Stein, J.L., Stein, G.S., et al. (2008). Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J. Biol. Chem. 283, 8412-8422. https://doi.org/10.1074/jbc.M705578200
  13. Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885-887. https://doi.org/10.1038/nchembio.687
  14. Jung, T.W., Kim, H.C., Abd El-Aty, A.M., and Jeong, J.H. (2017). Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress. Cell Signal. 34, 133-140. https://doi.org/10.1016/j.cellsig.2017.03.013
  15. Kanazawa, I., Yamaguchi, T., Yano, S., Yamauchi, M., and Sugimoto, T. (2008). Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem. Biophys. Res. Commun. 375, 414-419. https://doi.org/10.1016/j.bbrc.2008.08.034
  16. Kim, D.Y., Kim, E.J., and Jang, W.G. (2018). Piperine induces osteoblast differentiation through AMPK-dependent Runx2 expression. Biochem. Biophys. Res. Commun. 495, 1497-1502. https://doi.org/10.1016/j.bbrc.2017.11.200
  17. Komori, T. (2006). Regulation of osteoblast differentiation by transcription factors. J. Cell. Biochem. 99, 1233-1239. https://doi.org/10.1002/jcb.20958
  18. Leclerc, G.M., Leclerc, G.J., Kuznetsov, J.N., DeSalvo, J., and Barredo, J.C. (2013). Metformin induces apoptosis through AMPK-dependent inhibition of UPR signaling in ALL lymphoblasts. PLoS One 8, e74420. https://doi.org/10.1371/journal.pone.0074420
  19. Lee, J. and Ozcan, U. (2014). Unfolded protein response signaling and metabolic diseases. J. Biol. Chem. 289, 1203-1211. https://doi.org/10.1074/jbc.R113.534743
  20. Li, J., Huang, J., Li, J.S., Chen, H., Huang, K., and Zheng, L. (2012). Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J. Hepatol. 56, 900-907. https://doi.org/10.1016/j.jhep.2011.10.018
  21. Li, J., Lee, B., and Lee, A.S. (2006). Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J. Biol. Chem. 281, 7260-7270. https://doi.org/10.1074/jbc.M509868200
  22. Lim, A., Zhou, J., Sinha, R.A., Singh, B.K., Ghosh, S., Lim, K.H., Chow, P.K.H., Woon, E.C., and Yen, P.M. (2016). Hepatic FTO expression is increased in NASH and its silencing attenuates palmitic acid-induced lipotoxicity. Biochem. Biophys. Res. Commun. 479, 476-481. https://doi.org/10.1016/j.bbrc.2016.09.086
  23. Murakami, T., Saito, A., Hino, S., Kondo, S., Kanemoto, S., Chihara, K., Sekiya, H., Tsumagari, K., Ochiai, K., Yoshinaga, K., et al. (2009). Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat. Cell Biol. 11, 1205-1211. https://doi.org/10.1038/ncb1963
  24. Oakhill, J.S., Scott, J.W., and Kemp, B.E. (2009). Structure and function of AMP-activated protein kinase. Acta Physiol. 196, 3-14. https://doi.org/10.1111/j.1748-1716.2009.01977.x
  25. Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., Tuncman, G., Gorgun, C., Glimcher, L.H., and Hotamisligil, G.S. (2004). Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457-461. https://doi.org/10.1126/science.1103160
  26. Pitman, R.T., Fong, J.T., Stone, A.L., Devito, J.T., and Puri, N. (2013). FTO knockdown decreases phosphorylation of Tau in neuronal cells: a potential model implicating the association of FTO with Alzheimer's disease. J. Alzheimers Dis. Parkinsonism 3, 125.
  27. Soeda, J., Cordero, P., Li, J., Mouralidarane, A., Asilmaz, E., Ray, S., Nguyen, V., Carter, R., Novelli, M., Vinciguerra, M., et al. (2017). Hepatic rhythmicity of endoplasmic reticulum stress is disrupted in perinatal and adult mice models of high-fat diet-induced obesity. Int. J. Food Sci. Nutr. 68, 455-466. https://doi.org/10.1080/09637486.2016.1261086
  28. Son, H.E., Kim, E.J., and Jang, W.G. (2018a). Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells. Life Sci. 193, 34-39. https://doi.org/10.1016/j.lfs.2017.12.008
  29. Son, H.E., Kim, K.M., Kim, E.J., and Jang, W.G. (2018b). Kisspeptin-10 (KP-10) stimulates osteoblast differentiation through GPR54-mediated regulation of BMP2 expression and activation. Sci. Rep. 8, 2134. https://doi.org/10.1038/s41598-018-20571-2
  30. Tews, D., Fischer-Posovszky, P., and Wabitsch, M. (2010). FTO - Friend or foe? Horm. Metab. Res. 42, 75-80. https://doi.org/10.1055/s-0029-1241831
  31. Wozney, J.M. (1998). The bone morphogenetic protein family: multifunctional cellular regulators in the embryo and adult. Eur. J. Oral. Sci. 106 Suppl 1, 160-166. https://doi.org/10.1111/j.1600-0722.1998.tb02170.x
  32. Wu, W., Feng, J., Jiang, D., Zhou, X., Jiang, Q., Cai, M., Wang, X., Shan, T., and Wang, Y. (2017). AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N(6)-methyladenosine. Sci. Rep. 7, 41606. https://doi.org/10.1038/srep41606
  33. Yamaguchi, A., Komori, T., and Suda, T. (2000). Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr. Rev. 21, 393-411. https://doi.org/10.1210/edrv.21.4.0403
  34. Zhao, X., Yang, Y., Sun, B.F., Shi, Y., Yang, X., Xiao, W., Hao, Y.J., Ping, X.L., Chen, Y.S., Wang, W.J., et al. (2014). FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24, 1403-1419. https://doi.org/10.1038/cr.2014.151

Cited by

  1. T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis vol.44, pp.1, 2021, https://doi.org/10.14348/molcells.2020.0143
  2. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics vol.42, pp.6, 2021, https://doi.org/10.1210/endrev/bnab006