• Title/Summary/Keyword: EPOXY

Search Result 3,699, Processing Time 0.033 seconds

W-type hexaferrite-epoxy composites for wide-band radar absorption (광대역 레이다 흡수용 W-type 육방정 페라이트-에폭시 복합 소재)

  • Su-Mi Lee;Tae-Woo Lee;Young-Min Kang;Hyemin Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.42-50
    • /
    • 2023
  • In this study, hexagonal ferrite powder with chemical formula SrZn2-xCoxFe16O27 was synthesized by a solid-state reaction method and its electromagnetic (EM) wave absorption characteristics were evaluated in the frequency range of 0.1-18 GHz with absorber thickness range of 0 - 10 mm. Reflection loss (RL) affecting electromagnetic wave absorption performance was calculated based on the transmission line theory using measured complex permeabilities and permittivities. RL spectra were also directly measured for some samples. They were well matched with calculated results. High-frequency complex permeability characteristics were changed gradually according to the amount of Co substitution (x). The EM wave absorption frequency band could be tuned accordingly. Hexaferrite samples with x = 1.0, 1.25, and 1.5 exhibited remarkable maximum electromagnetic wave absorption performances with minimum RL (RLmin) lowered than -50 dB. They also showed a very broad frequency band (Δf > 10 GHz) in which more than 90% of the EM wave energy absorption occurred (RL ≤ -10 dB).

Multi-scale Progressive Fatigue Damage Model for Unidirectional Laminates with the Effect of Interfacial Debonding (경계면 손상을 고려한 적층복합재료에 대한 멀티스케일 피로 손상 모델)

  • Dongwon Ha;Jeong Hwan Kim;Taeri Kim;Young Sik Joo;Gun Jin Yun
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • This paper presents a multi-scale progressive fatigue damage model incorporating the model for interfacial debonding between fibers and matrix. The micromechanics model for the progressive interface debonding was adopted, which defined the four different interface phases: (1) perfectly bonded fibers; (2) mild imperfect interface; (3) severe imperfect interface; and (4) completely debonded fibers. As the number of cycles increases, the progressive transition from the perfectly bonded state to the completely debonded fiber state occurs. Eshelby's tensor for each imperfect state is calculated by the linear spring model for a damaged interface, and effective elastic properties are obtained using the multi-phase homogenization method. The fatigue damage evolution formulas for fiber, matrix and interface were proposed to demonstrate the fatigue behavior of CFRP laminates under cyclic loading. The material parameters for the fiber/matrix fatigue damage were characterized using the chaotic firefly algorithm. The model was implemented into the UMAT subroutine of ABAQUS, and successfully validated with flat-bar UD laminate specimens ([0]8,[90]8, [30]16) of AS4/3501-6 graphite/epoxy composite.

Low Velocity Impact Property of CF/Epoxy Laminate according to Interleaved Structure of Amorphous Halloysite Nanotubes (비정질 할로이사이트 나노입자의 교차적층 구조에 따른 탄소섬유/에폭시 라미네이트의 저속 충격 특성)

  • Ye-Rim Park;Sanjay Kumar;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.270-274
    • /
    • 2023
  • The stacking configuration of fiber-reinforced polymer (FRP) composites, achieved via the filament winding process, exhibits distinct variations compared to conventional FRP composite stacking arrangements. Consequently, it becomes challenging to ascertain the influence of mechanical properties based on the typical stacking structures. Thus, it becomes imperative to enhance the mechanical behavior and optimize the interleaved structures to improve overall performance. Therefore, this study aims to investigate the impact of incorporating amorphous halloysite nanotubes (A-HNTs) within different layers of five unique layer arrangements on the low-velocity impact properties of interleaved carbon fiber-reinforced polymer (CFRP) structures. The low-velocity impact characteristics of the laminate were validated using a drop weight impact test, wherein the resulting impact damage modes and extent of damage were compared and evaluated under microscopic analysis. Each interleaved structure laminate according to whether nanoparticles are added was compared at impact energies of 10 J and 15 J. In the case of 10 J, the absorption energy showed a similar tendency in each structure. However, at 15 J, the absorption energy varies from structure to structure. Among them, a structure in which nanoparticles are not added exhibits the highest absorption energy. Additionally, various impact fracture modes were observed in each structure through optical microscopy.

Effects of Bisphenol A and BPA Alternatives on the Nervous System (Bisphenol A와 대체물질들이 신경계에 미치는 영향)

  • Ha Jung Moon;Seung Hyun Lee;Hyun Seung Shin;Eui-Man Jung
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.371-381
    • /
    • 2023
  • Endocrine disrupting chemicals (EDCs), used in a variety of products in modern society, are hormone-like substances that cause various diseases. Humans are exposed to EDCs through their inclusion in pesticides, plastics, cosmetics, detergents, and drugs. Bisphenol A (BPA), one of the representative endocrine disruptors, is an estrogen-like substance that has been widely used commercially in plastic and epoxy resins. BPA is a chemical that can disrupt the endocrine system, leading to reduced reproductive function, obesity, cancer, and neurodevelopmental disorders. Since the adverse health effects of BPA began to be reported the use of BPA has been regulated worldwide. Various alternatives to BPA have been widely used worldwide; representatively, bisphenol S (BPS) and bisphenol F (BPF) are the most commonly used in commercial contexts. BPS and BPF may cause endocrine-disrupting effects like those of BPA due to their similar chemical structures. Recent studies have reported that BPS and BPF disrupt the neurodevelopmental process and cause neurodevelopmental disorders. Therefore, future studies will be required for safety verification of BPA alternatives and the development of new alternatives to BPA for brain health. In this review, we reviewed the effects of BPA and the alternatives, BPS and BPF, on the nervous system.

Analysis of the integral fuel tank considering hygrothermal enviornmental factors (열습도 환경요소를 고려한 일체형 복합재 연료탱크의 해석)

  • Moon, Jin-Bum;Kim, Soo-Hyun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.64-69
    • /
    • 2007
  • Matrix dominant properties of composites are largely degraded under harmful environments such as temperature and humidity. Therefore we should consider the harmful environmental factors in the design of an UAV integral fuel tank subjected to high temperature and high humidity. The harmful environment experiment was performed for carbon/epoxy composites made of a unidirectional prepreg USN175B, and a plain woven fabric prepreg WSN3. The immersion experiment was performed under $90^{\circ}C$. The specimens were tested when the weight gam of specimen was saturated. The specimens were tested under $74^{\circ}C$ to obtain tensile and inplane shear properties. The results showed that the matrix dominant properties were extremely degraded by hygrothermal environment. To consider the variability of load, the anti-optimization method was applied. By using this method, the worst load case was found by comparing the load convex model and stability boundary. The stability boundary was obtained by analysis of the integral wing fuel tank of UAV using degraded properties. To do this, it was known that the worst load case of the integral wing fuel tank was the hovering mode load case.

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

Test Evaluation of a Linerless Composite Propellant Tank Using the Composite Collapsible Mandrel (복합재 분리형 맨드릴을 이용한 라이너 없는 복합재 추진제 탱크에 대한 시험 평가)

  • Seung Yun Rhee;Kwangsoo Kim;Young-Ha Yoon;Moo-Keun Yi;Hee Chul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.132-139
    • /
    • 2023
  • A linerless composite propellant tank was designed and manufactured by using the carbon fiber-reinforced composite materials which have superior strength-to-weight ratio in order to reduce weight of the tank. In this research, we designed a sub-scale composite propellant tank with a diameter of 800 mm to withstand an MEOP of 1.7 MPa. We manufactured the boss of the tank by using the same composite materials to reduce the thermal expansion difference between the boss and the secondary-bonded composite layers of the barrel in the cryogenic environment. We used the collapsible mandrel to manufacture the tank without any liner. The mandrel was made from epoxy-based composite tooling prepregs to reduce weight of the mandrel. We manufactured the test tanks by laying up the carbon fiber fabric prepregs manually on the mandrel and then applying the autoclave cure process. We performed a proof test, a helium tightness test, a repeated pressurization test, and a burst test in room temperature. The test results demonstrate that the proposed design and manufacture process satisfies all strength requirements as well as an anti-leakage requirement.

Electromechanical Relation of Conductive Materials with High Electrical Resistance and Its Application to the Estimation of In_situ Stress of Structural Tendons (고저항 전도체의 전기기계적 상관작용과 작용응력 예측이 가능한 긴장재의 제안)

  • Zi, Goangseup;Jun, Kiwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.363-370
    • /
    • 2006
  • It is proposed that the electromechanical relation of the conductive materials with high electrical resistance may be used to estimate the current stress of prestressing tendons. To choose the best conductive material to this end, we studied the electromechanical relations of carbon fibers and metalic heat wires experimentally. The strain of those materials was controlled instead of the stress during the experiment. It is found that the relation of carbon fibers can be modelled by a parabolic(or hyperbolic) function in the early stage of deformation. However because the relation is not consistent when it is unloaded and reload, carbon fibers are not suitable for this purpose. Metallic heat wires show a consistent linear relation during loading and unloading in the elastic deformation and are suitable for this purpose. To estimate the electromechanics relation of metallic wires, we developed a simple formula based on the rigid plasticity. We propose a new kind of prestressing tendons whose stress can be monitored. As a side result of this study, we found that the electromechanical relation of carbon fibers without epoxy matrix becomes almost linear after a certain strain.

Effects of various root canal sealers on tooth discoloration and internal bleaching (근관치료용 실러가 치아변색과 실활치 미백에 미치는 영향)

  • Kim, Yi-San;Choi, Sung-Hyeon;Youn, Kyeong-Eun;Jang, Ji-Hyun;Chang, Hoon-Sang;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann;Lee, Bin-Na
    • Korean Journal of Dental Materials
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • There are several causes of tooth discoloration following root canal treatment. In this study, we evaluated the effects of sealers on tooth discoloration and internal bleaching. Twenty-four teeth were divided into 4 groups: control group, AH plus, Endosequece BC, and MTA fillapex group. Root canal filling was performed using each sealer conventionally and non-vital bleaching was performed with sodium perborate. The L, a, and b values were measured using Vita easyshade. Tooth discoloration after root canal treatment occurs irrespective of the type of sealers and may cause discoloration with only gutta-percha cone. The effect of non-vital bleaching following the use of calcium silicate-based sealers such as Endosequece BC and MTA fillapex was higher than that of AH plus. Therefore, it needs careful use of sealers in endodontics and calcium silicate-based sealers have advantages of bleaching in case of discolored tooth.

Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA)

  • Eskandari, Vahid;Hadi, Amin;Sahbafar, Hossein
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.417-426
    • /
    • 2022
  • Bisphenol A (BPA) is one of the chemicals used in monomer epoxy resins and polycarbonate plastics. The surface-enhanced Raman spectroscopy (SERS) method is precise for identifying biological materials and chemicals at considerably low concentrations. In the present article, the substrates coated with gold nanoparticles have been studied to identify BPA and control the diseases caused by this chemical. Gold nanoparticles were made by a simple chemical method and by applying gold salt and trisodium citrate dihydrate reductant and were coated on glass substrates by a spin-coat approach. Finally, using these SERS substrates as plasmonic sensors and Raman spectroscopy, the Raman signal enhancement of molecular vibrations of BPA was investigated. Then, the molecular vibrations of BPA in some consumer goods were identified by applying SERS substrates as plasmonic sensors and Raman spectroscopy. The fabricated gold nanoparticles are spherical and quasi-spherical nanoparticles that confirm the formation of gold nanoparticles by observing the plasmon resonance peak at 517 nm. Active SERS substrates have been coated with nanoparticles, which improve the Raman signal. The enhancement of the Raman signal is due to the resonance of the surface plasmons of the nanoparticles. Active SERS substrates, gold nanoparticles deposited on a glass substrate, were fabricated for the detection of BPA; a detection limit of 10-9 M and a relative standard deviation (RSD) equal to 4.17% were obtained for ten repeated measurements in the concentration of 10-9 M. Hence, the Raman results indicate that the active SERS substrates, gold nanoparticles for the detection of BPA along with the developed methods, show promising results for SERS-based studies and can lead to the development of microsensors. In Raman spectroscopy, SERS active substrate coated with gold nanoparticles are of interest, which is larger than gold particles due to the resonance of the surface plasmons of gold nanoparticles and the scattering of light from gold particles since the Raman signal amplifies the molecular vibrations of BPA. By decreasing the concentration of BPA deposited on the active SERS substrates, the Raman signal is also weakened due to the reduction of molecular vibrations. By increasing the surface roughness of the active SERS substrates, the Raman signal can be enhanced due to increased light scattering from rough centers, which are the same as the larger particles created throughout the deposition by the spin-coat method, and as a result, they enhance the signal by increasing the scattering of light. Then, the molecular vibrations of BPA were identified in some consumer goods by SERS substrates as plasmonic sensors and Raman spectroscopy.