• Title/Summary/Keyword: EPB shield tunnelling

Search Result 32, Processing Time 0.023 seconds

A study on EPB shield TBM face pressure prediction using machine learning algorithms (머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구)

  • Kwon, Kibeom;Choi, Hangseok;Oh, Ju-Young;Kim, Dongku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.217-230
    • /
    • 2022
  • The adequate control of TBM face pressure is of vital importance to maintain face stability by preventing face collapse and surface settlement. An EPB shield TBM excavates the ground by applying face pressure with the excavated soil in the pressure chamber. One of the challenges during the EPB shield TBM operation is the control of face pressure due to difficulty in managing the excavated soil. In this study, the face pressure of an EPB shield TBM was predicted using the geological and operational data acquired from a domestic TBM tunnel site. Four machine learning algorithms: KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), and XGB (eXtreme Gradient Boosting) were applied to predict the face pressure. The model comparison results showed that the RF model yielded the lowest RMSE (Root Mean Square Error) value of 7.35 kPa. Therefore, the RF model was selected as the optimal machine learning algorithm. In addition, the feature importance of the RF model was analyzed to evaluate appropriately the influence of each feature on the face pressure. The water pressure indicated the highest influence, and the importance of the geological conditions was higher in general than that of the operation features in the considered site.

A lab-scale screw conveyor system for EPB shield TBM: system development and applicability assessment (토압식 쉴드 TBM 스크류 컨베이어 축소 모형 시험 장비: 장비 개발과 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Dongjoon Lee;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.533-549
    • /
    • 2024
  • Soil conditioning is a critical process when tunneling with an earth pressure balance (EPB) shield tunnel boring machine (TBM) to enhance performance. To determine the optimal additive injection conditions, it is important to understand the rheological properties of conditioned soil, which is typically assessed using a rheometer. However, a rheometer cannot simulate the actual process of muck discharge in a TBM. Therefore, in this study, a scaled-down model of an 8-meter-class EPB shield TBM chamber and screw conveyor, reduced by a factor of 1:20, was fabricated and its applicability was evaluated through laboratory experiments. A lab-scale model experiment was conducted on artificial sandy soil using foam and polymer as additives. The experimental results confirmed that screw torque was consistent with trends observed in previous laboratory pressurized vane shear test data, establishing a positive proportional relationship between screw torque and yield stress. The muck discharge efficiency according to foam injection ratio (FIR) showed similar values overall, but decreased slightly at 60% of FIR and when the polymer was added. In addition, the pressure distribution generated along the chamber and screw conveyor was assessed in a manner similar to the actual EPB TBM. This study demonstrates that the lab-scale screw conveyor model can be used to evaluate the shear properties and muck discharge efficiency.

Evaluation of geological conditions and clogging of tunneling using machine learning

  • Bai, Xue-Dong;Cheng, Wen-Chieh;Ong, Dominic E.L.;Li, Ge
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.59-73
    • /
    • 2021
  • There frequently exists inadequacy regarding the number of boreholes installed along tunnel alignment. While geophysical imaging techniques are available for pre-tunnelling geological characterization, they aim to detect specific object (e.g., water body and karst cave). There remains great motivation for the industry to develop a real-time identification technology relating complex geological conditions with the existing tunnelling parameters. This study explores the potential for the use of machine learning-based data driven approaches to identify the change in geology during tunnel excavation. Further, the feasibility for machine learning-based anomaly detection approaches to detect the development of clayey clogging is also assessed. The results of an application of the machine learning-based approaches to Xi'an Metro line 4 are presented in this paper where two tunnels buried in the water-rich sandy soils at depths of 12-14 m are excavated using a 6.288 m diameter EPB shield machine. A reasonable agreement with the measurements verifies their applicability towards widening the application horizon of machine learning-based approaches.

Tunnelling in Bangkok - Two Case Studies (방콕의 터널공사 - 두 개의 사례연구)

  • Teparaksa, Wanchai;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.153-163
    • /
    • 2005
  • This paper presents two case studies for tunnelling in Bangkok: a subway tunnel site and a flood diversion tunnel site. The first case study is related to ground displacement response for dual tunnel Bangkok MRT subway. The MRT subway project of Bangkok city consists of dual tunnels about 20 km long with 18 subway stations. The tunnels are seated in the firm first stiff silty clay layer between 15-22 m in depth below ground surface. The behavior of ground deformation response based on instrumentation is presented. The back analysis based on plain strain FEM analysis is also presented and agrees with field performance. The shear strain of FEM analysis is in the range of 0.1-1% and in accordance with the results of self boring pressuremeter tests. Meanwhile, the second case study is related to the EPB tunnelling bored underneath through underground obstruction. The Premprachakorn flood diversion tunnel is the shortcut tunnel to divert the flood water in rainy season into the Choapraya river. The tunnel was bored by means of EPB shield tunnelling in very stiff silty clay layer at about 20-24 m in depth. During flood diversion tunnel bored underneath the existing Bangkok main water supply tunnel and pile foundation of the bridge, instrumentation was monitored and compared with predicted FEM analysis. The prevention risk potential by means of predicting damage assessment is also presented and discussed.

  • PDF

A Study on ground behavior of shield TBM lunching area during xcavation (Shield TBM 발진부 굴착에 따른 지반거동에 관한 연구)

  • O, Tae-Sang;Kim, Bae-Sik;Sin, Han-Cheol;Kim, Sang-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.353-364
    • /
    • 2011
  • This paper presents the ground behaviour of shield TBM lunching area during excavation. In order to perform this study, a scaled model test was carried out in the 1/45 scale for a field tunnel in practice where the tunnel had about 7.8 m diameter at Seoul Metro Line 9 construction site. The test to simulate earth pressure balance (EPB) shield TBM tunnelling at the lunching area was conducted with the developed small scaled shield TBM machine. Measurements were performed during simulation of excavation for total jacking thrust force, ground displacements and pressures. Based on the analysis of simulation results, the stability of ground was verified and evaluated. In particular, the suitable reinforcement range and methods are also suggested. In addition, these results are useful for engineers and technicians to select suitable and serviceable machine operation parameters and reduce environmental influence at all stages of tunnel construction.

  • PDF

A preliminary study for numerical and analytical evaluation of surface settlement due to EPB shield TBM excavation (토압식 쉴드 TBM 굴착에 따른 지반침하 거동 평가에 관한 해석적 기초연구)

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jung Joo;Kim, Kyoung Yul;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.183-198
    • /
    • 2021
  • The EPB (Earth Pressure Balanced) shield TBM method restrains the ground deformation through continuous excavation and support. Still, the significant surface settlement occurs due to the ground conditions, tunnel dimensions, and construction conditions. Therefore, it is necessary to clarify the settlement behavior with its influence factors and evaluate the possible settlement during construction. In this study, the analytical model of surface settlement based on the influence factors and their mechanisms were proposed. Then, the parametric study for controllable factors during excavation was conducted by numerical method. Through the numerical analysis, the settlement behavior according to the construction conditions was quantitatively derived. Then, the qualitative trend according to the ground conditions was visualized by coupling the numerical results with the analytical model of settlement. Based on the results of this study, it is expected to contribute to the derivation of the settlement prediction algorithm for EPB shield TBM excavation.

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.

Predicting ground condition ahead of tunnel face utilizing electrical resistivity applicable to shield TBM (Shield TBM에 적용 가능한 전기비저항 기반 터널 굴착면 전방 예측기술)

  • Park, Jin-Ho;Lee, Kang-Hyun;Shin, Young-Jin;Kim, Jae-Young;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.599-614
    • /
    • 2014
  • When tunnelling with TBM (Tunnel Boring Machine), accessibility to tunnel face is very limited because tunnel face is mostly occupied by a bunch of machines. Existing techniques that can predict ground condition ahead of TBM tunnel are extremely limited. In this study, the TBM Resistivity Prediction (TRP) system has been developed for predicting anomalous zone ahead of tunnel face utilizing electrical resistivity. The applicability and prediction accuracy of the developed system has been verified by performing field tests at subway tunnel construction site in which an EPB (Earth Pressure Balanced) shield TBM was used for tunnelling work. The TRP system is able to predicts the location, thickness and electrical properties of anomalous zone by performing inverse analysis using measured resistivity of the ground. To make field tests possible, an apparatus was devised to attach electrode to tunnel face through the chamber. The electrode can be advanced from the chamber to the tunnel face to fully touch the ground in front of the tunnel face. In the 1st field test, none of the anomalous zone was predicted, because the rock around the tunnel face has the same resistivity and permittivity with the rock ahead of tunnel face. In the 2nd field test, 5 m thick anomalous zone was predicted with lower permittivity than that of the rock around the tunnel face. The test results match well with the ground condition predicted, respectively, from geophysical exploration, or directly obtained either from drilling boreholes or from daily observed muck condition.

Preliminary study on a spoke-type EPB shield TBM by discrete element method (개별요소법을 활용한 스포크 타입 토압식 쉴드TBM의 예비 해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Choi, Soon-Wook;Park, Byungkwan;Kang, Tae-Ho;Sim, Jung Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1029-1044
    • /
    • 2017
  • The Discrete Element Method (DEM) is one of the useful numerical methods to analyze the behavior of the ground formation by computing the motion and interaction using particles. The DEM has not been applied in civil engineering but also a wide range of industrial fields, such as chemical engineering, pharmacy, material science, food engineering, etc. In this study, to review a performance of the spoke-type earth pressure balance (EPB) shield TBM (Tunnel Boring Machine), the commercial software based on the DEM technology was used. An analysis of the TBM during excavation was conducted according to two pre-defined excavation conditions with the different rotation speed of a cutterhead. During the analysis, the resistant torque at the face of the cutterhead, the compressive force at the cutterhead and shield surface, the muck discharge at the screw auger were measured and compared. Upon the two kinds of excavation conditions, the applicability of the DEM analysis was reviewed as a modelling method for the TBM.

A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel (토사터널의 쉴드 TBM 데이터 시계열 분석을 통한 막장 전방 예측 연구)

  • Jung, Jee-Hee;Kim, Byung-Kyu;Chung, Heeyoung;Kim, Hae-Mahn;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2019
  • This paper presents a method to predict ground types ahead of a tunnel face utilizing operational data of the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) when running through soil ground. The time series analysis model which was applicable to predict the mixed ground composed of soils and rocks was modified to be applicable to soil tunnels. Using the modified model, the feasibility on the choice of the soil conditioning materials dependent upon soil types was studied. To do this, a self-organizing map (SOM) clustering was performed. Firstly, it was confirmed that the ground types should be classified based on the percentage of 35% passing through the #200 sieve. Then, the possibility of predicting the ground types by employing the modified model, in which the TBM operational data were analyzed, was studied. The efficacy of the modified model is demonstrated by its 98% accuracy in predicting ground types ten rings ahead of the tunnel face. Especially, the average prediction accuracy was approximately 93% in areas where ground type variations occur.