DOI QR코드

DOI QR Code

Evaluation of geological conditions and clogging of tunneling using machine learning

  • Bai, Xue-Dong (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Cheng, Wen-Chieh (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Ong, Dominic E.L. (School of Engineering and Built Environment, Griffith University) ;
  • Li, Ge (School of Civil Engineering, Xi'an University of Architecture and Technology)
  • Received : 2020.10.25
  • Accepted : 2021.03.09
  • Published : 2021.04.10

Abstract

There frequently exists inadequacy regarding the number of boreholes installed along tunnel alignment. While geophysical imaging techniques are available for pre-tunnelling geological characterization, they aim to detect specific object (e.g., water body and karst cave). There remains great motivation for the industry to develop a real-time identification technology relating complex geological conditions with the existing tunnelling parameters. This study explores the potential for the use of machine learning-based data driven approaches to identify the change in geology during tunnel excavation. Further, the feasibility for machine learning-based anomaly detection approaches to detect the development of clayey clogging is also assessed. The results of an application of the machine learning-based approaches to Xi'an Metro line 4 are presented in this paper where two tunnels buried in the water-rich sandy soils at depths of 12-14 m are excavated using a 6.288 m diameter EPB shield machine. A reasonable agreement with the measurements verifies their applicability towards widening the application horizon of machine learning-based approaches.

Keywords

References

  1. Basmenj, A.K., Ghafoori, M., Cheshomi, A. and Azandariani, Y.K. (2016), "Adhesion of clay to metal surface; Normal and tangential measurementy", Geomech. Eng., 10(2), 125-135. https://doi.org/10.12989/gae.2016.10.2.125.
  2. Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  3. Cheng, W.C., Ni, J.C., Arulrajah, A. and Huang, H.W. (2018), "A simple approach for characterising tunnel bore conditions based upon pipe-jacking data", Tunn. Undergr. Sp. Tech., 71, 494-504. https://doi.org/10.1016/j.tust.2017.10.002.
  4. Cheng, W.C., Ni, J.C., Shen, S.L. and Huang, H.W. (2017), "Investigation into factors affecting jacking force: A case study", P. I. Civ. Eng. Geotec., 170(4), 322-334. https://doi.org/10.1680/jgeen.16.00117.
  5. Cheng, W.C., Wang, L., Xue, Z.F., Ni, J.C., Rahman M. and Arulrajah, A. (2019a), "Lubrication performance of pipejacking in alluvial deposits", Tunn. Undergr. Sp. Tech., 91, 102991. https://doi.org/10.1016/j.tust.2019.102991.
  6. Cheng, W.C., Ni, J.C., Huang, H.W. and Shen, J.S. (2019b), "The use of tunnelling parameters and spoil characteristics to assess soil types: A case study from alluvial deposits at a pipejacking project site", B. Eng. Geol. Environ., 78(4), 2933-2942. https://doi.org/10.1007/s10064-018-1288-4.
  7. Cheng, W.C., Bai, X.D., Sheil, B.B., Li, G. and Wang, F. (2020a), "Identifying characteristics of pipejacking parameters to assess geological conditions using optimisation algorithm-based support vector machines", Tunn. Undergr. Sp. Tech., 106, 103592. https://doi.org/10.1016/j.tust.2020.103592.
  8. Cheng, W.C., Li, G., Ong, D.E.L., Chen, S.L. and Ni, J.C. (2020b), "Modelling liner forces response to very close-proximity tunnelling in soft alluvial deposits", Tunn. Undergr. Sp. Tech., 103, 103455. https://doi.org/10.1016/j.tust.2020.103455.
  9. Cheng, W.C., Li, G., Liu, N., Xu, J. and Horpibulsuk, S. (2020c), "Recent massive incidents for subway construction in soft alluvial deposits of Taiwan: A review", Tunn. Undergr. Sp. Tech., 96, 103178. https://doi.org/10.1016/j.tust.2019.103178.
  10. Cleveland, R.B., Cleveland, W.S., McRae, J.E. and Terpenning, I.J. (1990), "STL: A seasonal-trend decomposition procedure based on loess", J. Off. Stat., 6(1), 3-33.
  11. Eskandari, F., Goharrizi, K.G. and Hooti, R. (2018), "The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro", Geomech. Eng., 15(2), 769-774. https://doi.org/10.12989/gae.2018.15.2.769.
  12. Feinendegen, M., Ziegler, M., Weh, M. and Spagnoli, G. (2011), "Clogging during EPB-tunnelling: Occurrence, classification and new manipulation methods", Proceedings of the ITA-AITES World Tunnel Congress, Helsinki, Finland, January.
  13. Fountaine, E.R. (1954), "Investigations into the mechanism of soil adhesion", Eur. J. Soil Sci., 5(2), 251-263. https://doi.org/10.1111/j.1365-2389.1954.tb02191.x.
  14. Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat., 19, 1-67. https://doi.org/10.1214/aos/1176347963
  15. Gao, W. and He, T.Y. (2017), "Displacement prediction in geotechnical engineering based on evolutionary neural network", Geomech. Eng., 13(5), 845-860. https://doi.org/10.12989/gae.2017.13.5.845.
  16. Goh, A.T.C. and Hefney, A.M. (2010), "Reliability assessment of EPB tunnel-related settlement", Geomech. Eng., 2(1), 57-69. https://doi.org/10.12989/gae.2010.2.1.057.
  17. Hollmann, F.S. and Thewes, M. (2013), "Assessment method for clay clogging and disintegration of fines in mechanised tunnelling", Tunn. Undergr. Sp. Tech., 37, 96-106. https://doi.org/10.1016/j.tust.2013.03.010.
  18. Javadi, A.A. and Rezania, M. (2009), "Applications of artificial intelligence and data mining techniques in soil modeling", Geomech. Eng., 1(1), 53-74. https://doi.org/10.12989/gae.2009.1.1.053.
  19. Lee, C.J., Jeon, Y.J. Kim, S.H. and Park, I.J. (2016), "The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil", Geomech. Eng., 11(4), 553-570. https://doi.org/10.12989/gae.2016.11.4.553.
  20. Li, S., Liu, B., Nie, L., Liu, Z., Tian, M., Wang, S., Su, M. and Guo, Q. (2015), "Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review", J. Rock Mech. Geotech. Eng., 7(4), 469-478. https://doi.org/10.1016/j.jrmge.2015.06.004.
  21. Li, S., Nie, L. and Liu, B. (2018b), "The practice of forward prospecting of adverse geology applied to hard rock TBM tunnel construction: The case of the Songhua River water conveyance project in the middle of Jilin Province", Engineering, 4(1), 131-137. https://doi.org/10.1016/j.eng.2017.12.010.
  22. Li, S., Xu, S., Nie, L., Liu, B., Liu, R., Zhang, Q., Zhao, Y., Liu, Q., Wang, H., Liu, H. and Guo, Q. (2018a), "Assessment of electrical resistivity imaging for pre-tunneling geological characterization - a case study of the Qingdao R3 metro line tunnel", J. Appl. Geophys., 153, 38-46. https://doi.org/10.1016/j.jappgeo.2018.03.024.
  23. Liu, B., Liu, Z., Li, S., Fan, K., Nie, L. and Zhang, X. (2017a), "An improved time-lapse resistivity tomography to monitor and estimate the impact on the groundwater system induced by tunnel excavation", Tunn. Undergr. Sp. Tech., 66, 107-120. https://doi.org/10.1016/j.tust.2017.04.008.
  24. Liu, B., Liu, Z., Nie, L., Su, M., Sun, H., Fan, K., Zhang, X. and Pang, Y. (2017b), "Comprehensive surface geophysical investigation of karst caves ahead of the tunnel face: A case study in the Xiaoheyan section of the water supply project from Songhua River, Jilin, China", J. Appl. Geophys., 144, 37-49. https://doi.org/10.1016/j.jappgeo.2017.06.013.
  25. Liu, J.K., Luan, H.J., Zhang, Y.C., Sakaguchi, O. and Jiang, Y.J. (2020), "Prediction of unconfined compressive strength ahead of tunnel face using measurement-while-drilling data based on hybrid genetic algorithm", Geomech. Eng., 22(1), 81-95. https://doi.org/10.12989/gae.2020.22.1.081.
  26. Luat, N.V., Lee, K. and Thai, D.K. (2020a), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583.
  27. Luat, N.V., Nguyen, V.Q. and Lee, S. (2020b), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
  28. Mazek, S.A. (2014), "Evaluation of surface displacement equation due to tunnelling in cohesionless soil", Geomech. Eng., 7(1), 55-73. https://doi.org/10.12989/gae.2014.7.1.055.
  29. O'Dwyer, K.G., McCabe, B.A. and Sheil, B.B. (2019), "Interpretation of pipe-jacking and lubrication records for drives in silty soil", Undergr. Sp., 5(3), 199-209. https://doi.org/10.1016/j.undsp.2019.04.001.
  30. Park, T.W., Kim, H.G., Tanvirn, M.T., lee, J.B. and Moon, S.J. (2018), "Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils", Geomech. Eng., 14(1), 99-105. https://doi.org/10.12989/gae.2018.14.1.099.
  31. Persons, W.M. (1919), Indices of Business Conditions: An Index of General Business Conditions, Harvard University Press.
  32. Rezaei, A.H., Shirzehhagh, M. and Golpasand, M.R.B. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 153-165. https://doi.org/10.12989/gae.2019.19.2.153.
  33. Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and Williamson, R.C. (2001), "Estimating the support of a highd-imensional distribution", Neural Comput., 13(7), 1443-1471. https://doi.org/10.1162/089976601750264965.
  34. Sheil, B.B., Curran, B.G. and McCabe, B.A. (2016), "Experiences of utility microtunnelling in Irish limestone, mudstone and sandstone rock", Tunn. Undergr. Sp. Tech., 51, 326-337. https://doi.org/10.1016/j.tust.2015.10.019.
  35. Sheil, B.B., Suryasentana, S.K. and Cheng, W.C. (2020), "Assessment of anomaly detection methods applied to microtunneling", J. Geotech. Geoenviron. Eng., 146(9). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002326.
  36. Spagnoli, G., Feinendegen, M., Stanjek, H. and Azzam, R. (2011a), "Soil conditioning for clays in EPBMs", Tunn. Tunn. Int., 43(10), 56-61.
  37. Spagnoli, G., Klitzsch, N., Fernandez-Steeger, T., Feinendegen, M., Rey, A.R., Stanjek, H. and Azzam, R. (2011b), "Application of electro-osmosis to reduce the adhesion of clay during mechanical tunnel driving", Environ. Eng. Geosci., 17(4), 417-426. https://doi.org/10.2113/gseegeosci.17.4.417.
  38. Thewes, M. (1999), "Adhesion of clay soil in tunnel drives with slurry shields (In German: Adhasion von Tonboden beim Tunnelvortrieb mit Flussigkeitsschilden)", Berichte aus Bodenmechanik und Grundbau der Bergischen Universitat Wuppertal, Fachbereich Bauingenieurwesen, Bd. 21. Shaker Verlag, Aachen, Germany.
  39. Thewes, M. and Hollmann, F.S. (2014), "TBM-specific testing scheme to assess the clogging tendency of rock", Geomech. Tunn., 7(5), 520-527. https://doi.org/10.1002/geot.201400048.
  40. Thewes, M. and Hollmann, F.S. (2016), "Assessment of clay soils and clay-rich rock for clogging of TBMs", Tunn. Undergr. Sp. Tech., 57, 122-128. https://doi.org/10.1016/j.tust.2016.01.010.
  41. Wang, Z.F., Cheng, W.C. and Wang, Y.Q. (2018), "Investigation into geohazards during urbanization process of Xi'an, China", Nat. Hazards, 92(3), 1937-1953. https://doi.org/10.1007/s11069-018-3280-5.
  42. Xu, J.C., Ren, Q.W. and Shen, Z.H. (2017), "Sensitivity analysis of the influencing factors of slope stability based on LS-SVM", Geomech. Eng., 13(3), 447-458. https://doi.org/10.12989/gae.2017.13.4.447.
  43. Zhang, W.G. and Goh, A.T.C. (2016), "Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression", Geomech. Eng., 10(3), 269-284. https://doi.org/10.12989/gae.2016.10.3.269.
  44. Zhang, W.G., Zhang, R.H. and Goh, A.T.C. (2018), "MARS inverse analysis of soil and wall properties for braced excavations in clays", Geomech. Eng., 16(6), 577-588. https://doi.org/10.12989/gae.2018.16.6.577.

Cited by

  1. Revealing the Enhancement and Degradation Mechanisms Affecting the Performance of Carbonate Precipitation in EICP Process vol.9, 2021, https://doi.org/10.3389/fbioe.2021.750258
  2. Internal erosion behaviour of compacted loess against different hydraulic conditions indicated by enhanced pinhole tests vol.14, pp.21, 2021, https://doi.org/10.1007/s12517-021-08583-1