• Title/Summary/Keyword: ENR

Search Result 60, Processing Time 0.028 seconds

Rubber Compounds with High Gas Barrier Property by Mixing Nylon 6 to Maleic Anhydride Grafted ENR 50 (무수 말레인산으로 그래프트된 ENR 50에 Nylon 6를 혼합한 기체 고차단성 고무 배합물)

  • Lim, Jong Hyuk;Cho, Ur Ryong
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.770-776
    • /
    • 2013
  • The ENR 50 having the lowest gas permeability was blended with Nylon 6 which exhibits superior gas permeability, excellent wear resistance by using a twin-screw extruder. The blended materials showed the increased gas barrier property and physical properties, but did not yield a great synergistic effect due to low dispersion of Nylon 6 to ENR 50. To improve dispersion of Nylon 6 in the rubber matrix, maleic anhydride (MAH) was grafted to ENR 50. The grafting reaction between MAH and ENR 50 was evidenced using IR spectroscopy. The grafted and blended materials, ENR 50- g-MAH/Nylon 6 compounds, resulted in an enhanced gas barrier property and physical properties compared with compounds without MAH. The compound at 5 phr of MAH showed the highest crosslinking density and the best performances.

Effect of Silica Contents on the Vulcanizates Structure and Physical Properties in ENR/BR Blend Compounds

  • Sanghoon Song;Junhwan Jeong;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • As regulations on greenhouse gas emission have strengthened globally, the demand for improved fuel efficiency in automobiles continues to rise. In response, the tire industry is actively conducting research to improve fuel efficiency by enhancing tire performance. In this study, silica-filled epoxidized natural rubber (ENR)/butadiene rubber (BR) blend compounds were manufactured according to ENR types and silica contents, and their physical properties and vulcanizate structure were evaluated. ENR-50, which has a higher epoxide content than ENR-25, exhibited stronger filler-rubber interaction, resulting in superior abrasion resistance. In addition, because of its high glass transition temperature (Tg), the wet grip performance of ENR-50 improved, even though the rolling resistance increased. Increasing the amount of silica had little effect on the abrasion resistance due to the increase in filler-rubber interaction and decrease in toughness. In addition, ENR-50 exhibited better wet grip performance; however, the rolling resistance increased. The results indicated that truck bus radial (TBR) tire tread compounds can be designed by applying ENR-50 to improve wear resistance and wet grip performance. In addition, by applying ENR-25 and reducing the silica contents improve fuel efficiency.

Understanding Drug-Protein Interactions in Escherichia coli FabI and Various FabI Inhibitor Complexes

  • Lee, Han-Myoung;Singh, N. Jiten
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.162-168
    • /
    • 2011
  • Many ligands have been experimentally designed and tested for their activities as inhibitors against bacterial enoyl-ACP reductase (FabI), ENR. Here the binding energies of the reported ligands with the E. coli ENR-$NAD^+$ were calculated, analyzed and compared, and their molecular dynamics (MD) simulation study was performed. IDN, ZAM and AYM ligands were calculated to have larger binding energies than TCL and IDN has the largest binding energy among the considered ligands (TCL, S54, E26, ZAM, AYM and IDN). The contribution of residues to the ligand binding energy is larger in E. coli ENR-NAD+-IDN than in E. coli ENR-$NAD^+$-TCL, while the contribution of $NAD^+$ is smaller for IDN than for TCL. The large-size ligands having considerable interactions with residues and $NAD^+$ have many effective functional groups such as aromatic $\pi$ rings, acidic hydroxyl groups, and polarizable amide carbonyl groups in common. The cation-$\pi$ interactions have large binding energies, positively charged residues strongly interact with polarisable amide carbonyl group, and the acidic phenoxyl group has strong H-bond interactions. The residues which have strong interactions with the ligands in common are Y146, Y156, M159 and K163. This study of the reported inhibitor candidates is expected to assist the design of feasible ENR inhibitors.

A study on the oversea construction competitiveness evaluation by ENR data (ENR 통계데이터를 활용한 글로벌 해외건설 경쟁력평가 기초연구)

  • Han, Jae-Goo;Park, Hwan-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.185-187
    • /
    • 2011
  • The purpose of this study is to develop and apply the oversea construction competitiveness evaluation model which measures the competitiveness of construction companies in global construction market. This model consists of the design and construction competitiveness indexes by ENR statistic data and provides the oversea construction competitiveness index based on the evaluation model.

  • PDF

Experimental study of Nutrient Removal by Endogeneous Nitrate Respiration (ENR) Mechanism in domestic wastewater (질산성질소의 내생탈질기작을 이용한 하수내 영양소 제거에 관한 실험적 연구)

  • Park, Myung-Gyun;Ahn, Won-Sik;Lee, Eui-Sin;Heo, Yong-Rok;Park, Chong-Bok
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.77-83
    • /
    • 2002
  • The purpose of this study is to develop the efficient nutrient removal process and to verify operation and design parameters in domestic sewage. Endogenous nitrate respiration (ENR) was used for denitrification of nitrate in return sludge without additional organic carbon source. ENR reactor before the anaerobic tank enable to reduce nitrate below 3 mg/L and increase phosphate release at anaerobic reaction. Primary effluent during pilot scale plant were shown as TCOD/TP ratio of 40~60 and TCOD/TKN ratio of 5~7. Effluent concentrations were 10 to 12mg/L as TN and 1mg/L as TP respectively. In lab scale experiments endogenous denitrification rate of ENR reactor ranges from 0.042 to $0.057gNO_3-N/gMv.d.$ $SP_{rel}/SCOD_{rm}$ was shown as from 0.13 to 0.17 in anaerobic reaction. These kinetic parameters are expected to be available for BNR(Biological Nutrient Removal) plant design and ENR reaction is available for nutrient removal in low strength wastewater.

  • PDF

Prediction of Gas Permeability by Molecular Simulation

  • Yoo, Jae ik;Jiang, Yufei;Kim, Jin Kuk
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.175-181
    • /
    • 2019
  • The research and development of high-performance polymer materials with excellent gas barrier properties has gained considerable attention from the viewpoint of expanding their applications in various fields, including tire automobile parts and the polymer film industry. Natural rubber (NR) has been widely used as a rubber material in real-life, but its application is limited owing to its poor gas barrier properties. In this paper, we study the gas barrier properties of NR, epoxidized natural rubber (ENR), and their blend compositions by using molecular simulation. The results show that ENR-50 has superior oxygen barrier properties than those of NR. Moreover, the oxygen barrier properties of a blend of NR/ENR-50 improve with increasing volume fraction of ENR-50. The trend of improved oxygen barrier properties of NR, ENR-50, and their blend is in good agreement with experimental observations.

Wear Particulate Matters and Physical Properties of Silica filled ENR/BR Tread Compounds according to the BR Contents

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.243-249
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, we investigated the effect of varying the content of butadiene rubber (BR) on the properties of the rubber compounds and the amount of particulate matter in the TBR tire tread compound. Furthermore, we utilized carbon black in the NR/BR blend compounds owing to its excellent compatibility, and we used silica in the ENR-25/BR blend compounds because it can interact chemically with epoxide groups. The NR/BR blend compounds and the ENR-25/BR blend compounds were evaluated by varying their BR content between 20 phr and 30 phr. The results showed that the ENR-25/BR blend compounds had superior wear resistance than the NR/BR blend compounds. This was caused by the interaction between silica and ENR. In addition, it was confirmed that the increased wear resistance as the BR content increased. Furthermore, compared to the NR/BR blend compounds, ENR-25/BR blend compounds exhibited a lower tan 𝛿 value at 60℃ because silica was used as filler. This indicates a higher fuel efficiency. The measurement results for wear particulate matter showed that as increasing the BR content resulted in generation of less wear particulate matter. This was caused by the increased wear resistance. Moreover, the ENR-25/BR blend compounds with excellent filler-rubber interaction exhibited lower quantities of generated wear particulate matters as compared to the NR/BR blend compounds.

The Residues of Enrofloxacin in Cultured Paralichthys olivaceus (양식산 넙치에서 Enrofloxacin의 잔류)

  • Seo, Jung Soo;Jeon, Eun Ji;Lee, Eun Hye;Jung, Sung Hee;Park, Myoung Ae;Jee, Bo Young;Kim, Na Young
    • Journal of fish pathology
    • /
    • v.26 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Enrofloxacin is one of the normally used flouroquinolones in mammalian and fish but its withdrawal time and studies were remain obscure. The residual contents of enrofloxacin in fish muscle were analyzed by using HPLC-FLD. More than 0.1 mg/kg of ENR was detected in muscle tissues and the residues were found over 1 year after treatment. The concentration of ENR in Paralichthys olivaceus was not affected by water temperature and lasted for an extended amount of time. The spike recoveries of ENR in the muscle tissue ranged from 78% to 85%. From this results, we need the prescription by veterinarian or aquatic organism disease inspector in ENR usage to assure safety of fish. Future research is required to determine the recommendation dose of ENR for side effects and safety.

Study on the Characteristic of Elastomer Composite Containing Tungsten Powder

  • Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.56 no.1
    • /
    • pp.6-11
    • /
    • 2021
  • In order to develop an ultra-high-density elastomeric material for substitution of steel dynamic dampers, a new curing system and technique for high-loading of the filler were examined in this study. Mechanochemical modification of chloroprene rubber (MAH-g-CR) using an internal mixer was carried out with maleic anhydride (MAH) as a reactive monomer. The optimum amount of MAH was 10 phr and the efficient grafting of MAH on CR could be achieved at a mixing temperature of 100℃. After preparing MAH-g-CR, 50 mol% epoxidized natural rubber (ENR 50) was blended with MAH-g-CR to develop a "self-curable rubber blend system" via reaction between the functional groups of the elastomeric matrices without the curing agent and additives. The content of ENR 50 was fixed at 30 wt.% throughout evaluation of the curing behavior of the MAH-g-CR/ENR blend. Tungsten powder was added to the MAH-g-CR/ENR matrix up to 60 vol.% to obtain ultra-high-density, and the maximum density obtained was 7.57 g/㎤. Stable ts2 (scorch time) and t90 (90% cure time) could be obtained even when tungsten powder was incorporated up to 60 vol.%. In addition, the tensile strength and damping properties of MAH-g-CR/ENR containing 60 vol.% of tungsten were better than those of CR containing 60 vol.% of tungsten.