• 제목/요약/키워드: ENERGY WALKING

Search Result 219, Processing Time 0.025 seconds

Dynamic Balancing of Crank-type Transplanting Mechanism of Rice Transplanter (크랭크식 이앙기(移秧機) 식부기구(植付機構)의 동적(動的) 균형(均衡)에 관한 연구(硏究))

  • Lee, J.K.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.88-98
    • /
    • 1990
  • The purpose of this study was twofold : first, to reduce as much as possible the shaking moments of the crank-type transplanting mechanism of walking-type rice transplanters, and second, to evaluate whether or not a crank-type transplanting mechanism, if its shaking moment is reduced, can be used in riding-type transplanters for high speed transplanting operations. For these purposes, kinematic and force analyses of the currently available crank-type transplanting mechanisms were made and their results were compared with those observed by experimentation. The degree of shaking moment effect was also estimated Various efforts to minimize the shaking moments led to the development of a crank-type mechanism with a balancing gear, in which an eccentric balancing gear is combined into the driven link axis. Analysis of the developed mechanism showed that about 20% of the shaking energy can be reduced and about 40% of reduction in peak shaking moment can be obtained when comparing with those obtained without the balancing gear. It was concluded that crank-type transplanting mechanisms can be used for high speed operations with a forward speed of 0.9-1.2m/s if the balancing gear is additionally mounted. However, further considerations must be made to solve the space constraints in relation to the structural frame of riding type of rice transplanters.

  • PDF

A Study for the Development of Sit/Stand Kitchen Furniture to Reduce Fatigue in Housekeeping Activities (가사활동에 따른 피로도 감소를 위한 입좌식(立座式) 부엌가구의 개발에 관한 연구)

  • Kim, Chol-Hong
    • IE interfaces
    • /
    • v.15 no.1
    • /
    • pp.82-88
    • /
    • 2002
  • A study was conducted to develop user-centered kitchen furniture and workspace to reduce fatigue and to prevent housewives's disorders such as low back pain and musculoskeletal disorders from housekeeping activities. A questionnaire survey and interview were performed on 150 households those live in 32Pyung-type($105m^2$) apartment in Seoul vicinity. Also actual housekeeping activities for 24 hours were video-taped for further motion analysis. Results of the study revealed that housewives complained the inconvenience and small size of storage space, and worksurface height as the most important problems to be considered for redesign. And they responded, if feasible, sitting is preferred over standing while they are working. After adapting a sit/stand chair in the kitchen, a physiological experiment measuring heart rate(HR) and oxygen consumption($VO_2$) as response variables was conducted to examine the effects of sit/stand chair in reducing physiological demand during housekeeping activities. The results showed that working on sit/stand chair reduced energy expenditures by maximum of 30% and 31.0% in terms of HR and $VO_2$, respectively. Also rearrangement of kitchen structure based on motion analysis showed that walking distance during daily housekeeping activities can be reduced by 5.5% on the average. Hence, it is concluded that adapting a sit/stand chair in the kitchen could reduce fatigue and occupational disorders of housewives from extended housekeeping activities.

Evaluation of Dynamic Characteristics of Slipmeters with Force Platform (하중판을 이용한 미끄러짐 측정기의 동력학적 특성 평가)

  • Kim, Jung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.1-8
    • /
    • 2012
  • The purpose of this study were to evaluate the dynamic characteristics of the portable slipmeters with respect to actual slipping and to compare their output with those of force platform. The selected slipmeters were commonly used devices for slipperiness measurement in situ floors. Their output quantity represented force (BOT-3000), loss of energy(British pendulum striker) and angle of inclination(English XL). The validity of these devices was studied with respect to actual slipping using a force platform. The precision of these devices was also evaluated with force platform. Based on dynamics of human subject behavior when slipping during normal walking, the all devices tested in this study showed poor performances: low built up ratio, low normal pressure, and long contact time prior to slip. Nevertheless, their results reasonably correlated with those calculated from the ground reaction forces generated by the operation of the selected slipmeters on the force platform although the absolute values of COF from these three devices could be quite different. Also the results showed good repeatability under the some test conditions.

A study on Development of Actuator for Biped Walking Robot (직립보행로봇 Actuator 개발에 관한 연구)

  • Moon, Jin-Soo;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.73-80
    • /
    • 2005
  • Biped robot requires that an energy source and a control part should be installed on the body to realize active system. So, we choose the DC motor having high torque in compact size in this study. In the DC motor serve system, we choose power amplifier with analog configuration, developed the module combined the controller and the driver. We applied this module to robot actuator and studied the response characteristics in an action and a return. Main controller with serve system, loading PIC micro controller, can be load on the robot with light weight.

Housing Improvement Elements Depended on the Analysis of Urban Residents' Perceived Korean Housing Quality Related to Mental Health (거주자가 지각한 정신건강 관련 주거의 질 분석에 기초한 주거 개선요소)

  • Choi, Byungsook;Park, Jung-A
    • Journal of the Korean housing association
    • /
    • v.24 no.6
    • /
    • pp.189-197
    • /
    • 2013
  • The purpose of the study was to analyze the improvement elements depended on housing quality measurement tool related to mental health. The data for the analysis was collected through questionnaire survey method from November 1, 2012 to January 17, 2013, and the sample consisted of 720 respondents living in single detached houses, multi-families detached houses, apartments, and town houses in 4 cities, Seoul, Busan, Daejeon, and Kwangju. The data were analyzed using descriptive statistics. The results of improvement elements are as follows: 1) Pedestrian-threaten street from cars in physical safety 2) A secluded or dark spot and fear of walking at night in social security, 3) Indoor noise, outdoor noise, and evidence of abandoned trash heap/bottle in neighborhood in health & sanitation, 4) Illegal parking and heating control system in facility convenience, 5) Extra kitchen, number of bathrooms, and community spaces in space convenience, 6) Openness and spaciousness of indoor room, and satisfaction of house and neighborhood in comfort, 7) Management common/sharing space in maintenance, 8) Energy saving facility and environment friendly materials use in sustainability, 9) Burden on housing cost, asset value on house, and school district in economic value, 10) Reflection of residents style, surrounding building's number of layers, and neighborhood appearance of preference in housing environment image.

A Novel Way of Safety Awareness on the Walking with Single Sensor (단일 센서 이벤트 기반 옥외활동 안전 식별 방안)

  • Suh, Dong-Hyok;Oh, Young-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.197-202
    • /
    • 2016
  • This study suggests a novel way of safety cognition with single sensor. It is beneficial to make the most of the 3-axis acceleration sensor for context inference. It has remarkable advantages that size is too small and less malfunction or error. This study shows the calculation of the common life safety through the events data from the 3-axis acceleration sensor only. That includes the analyzation of the volume of energy and converting quantitative numerical value.

Trajectory Generation and Dynamic Control of Planar Biped Robots With Curved Soles

  • Yeon Je-Sung;Kwon O-Hung;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.602-611
    • /
    • 2006
  • This paper proposes a locomotion pattern and a control method for biped robots with curved soles. First, since the contact point of a supporting leg may arbitrarily move back and forth on the ground, we derived the desired trajectory from a model called the Moving. Inverted Pendulum Model (MIPM) where the Zero Moment Point (ZMP) exists at the supporting point and can be moved intentionally. Secondly, a biped robot with curved soles is an under-actuated system since the supporting point contacting with a point on the ground has no actuator during the single supporting phase. Therefore, this paper proposes a computed-torque control for this under-actuated system using decoupled dynamic equations. A series of computer simulations with a 7-DOF biped robot with curved soles shows that the proposed walking pattern and control method are effective and allow the biped robot to walk fast and stably, and move more like human beings. Also, it is shown that the curved sole shape has superior energy consumption compared to flat soles, and greater efficiency in ascending and descending the stairs.

Robust Control of Biped Robot Using Sliding Mode Controller (슬라이딩 모드 제어기를 이용한 이족로봇의 강건제어)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.576-583
    • /
    • 2000
  • A robust position control using a sliding mode controller is adopted for the stable dynamic walking of the biped. For the biped robot that is modeled with 14 degrees of freedom rigid bodies using the method of the multibody dynamics, the joint angles for simulation are obtained by the velocity transformation matrix using the given Cartesian foot and trunk trajectories. Hertz force model and Hysteresis damping element which is used in explanation of the energy dissipation during contact with ground are used for modeling of the ground reactions during the simulation. By the obtained that forces which contains highly confused noise elements and the system modeling uncertainties of various kinds such as unmodeled dynamics and parameter inaccuracies, the biped system will be unstable. For that problems, we are adopting a nonlinear robust control using a sliding mode controller. Under the assumption that the esimation error on the unknown parameters is bounded by a given function, that controller provides a successful way to preserve stability and achieve good performance, despite the presence of strong modeling imprecisions or uncertainties.

  • PDF

The Comparative Analysis of Gait Safety between Elderly Female and Adult Female (여성 노인과 성인의 보행안정성 비교)

  • Yi, Jae-Hoon;Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2014
  • The purpose of this study was to investigate the different patterns of the lower limb between elderly and adult females to reduce the rate of falls. Ten old females(age: $73.1{\pm}2.69yrs$, height: $151.9{\pm}4.82cm$, mass: $57.36{\pm}5.36$) and ten adult females(age: $28\pm}4.76$ yrs, height: $160.6{\pm}6.83cm$, mass: $53.9{\pm}8.44$) were participated in this experiment. The gait motions were captured with Qualisys system and variables were calculated with Visual-3D. The following results were found. The elderly female group showed bigger inclination angle between COM and COP than the adult female group so that the dynamic stability was reduced in walking for the compensation with a bigger stride width. The elderly female group ensure for the necessary forward movement of COM in order to replace the decreased function of ankle and knee joint. If the distance between COM and COP is closer and the energy reduction of a specific joint is reduced, they could prevent the elderly female's falling rate by strengthening of muscles which were related the extension of ankle joint.

Development of a Stance & Swing Phase Control Transfemoral Prosthesis (입각기와 유각기 제어 대퇴의지의 개발)

  • Kim, Shin-Ki;Kim, Jong-Gwon;Hong, Jeong-Hwa;Kim, Gyeong-Hun;Mun, Mu-Seong;Lee, Sun-Geol;Baek, Yeong-Nam
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.504-509
    • /
    • 2000
  • In this study, a transfemoral prosthesis system of which stance phase and swing phase are controlled during walking has been developed for the recovery of the biomechanical function of the amputated leg. It consists of a 5 bar link mechanism, a hydraulic-rubber knee damper for stance phase control and a pneumatic cylinder controlled via a microprocessor for stance phase control. The mechanical characteristics and behaviour of the knee damper which absorbs the impact energy generated at the heel contact was investigated. The characteristics of the pneumatic cylinder essential for the speed adaptation of the prosthesis during swing phase was also studied for its mechanical characteristics. The prosthesis was subject to the clinical test ant the gait characteristics obtained were very close to those of normal. The stance and swing controlled prosthesis that were developed in this study showed good stability during the stance phase and showed good controllability during the swing phase.

  • PDF