• Title/Summary/Keyword: EMTDC/PSCAD

Search Result 690, Processing Time 0.023 seconds

Evaluation algorithm for Hosting Capacity of PV System using LDC Method of Step Voltage Regulator in Distribution Systems (배전계통에 있어서 선로전압조정장치의 LDC방식에 의한 태양광전원의 수용성 향상 평가알고리즘)

  • Lee, Se-Yeon;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.20-28
    • /
    • 2020
  • According to the 3020 RE (renewable energy) policy of the Korean Government, distributed generators, including PV (photovoltaic) and WP (wind power) systems, have been installed and operated in distribution systems. On the other hand, if large-scale PV systems are interconnected in a distribution system, the spread of PV systems may be postponed due to a reduction of the hosting capacity in PV systems because of the over-voltage phenomena at the customer end by violating the allowable voltage limits. Under these circumstances, this paper proposes an evaluation algorithm of the hosting capacity of a PV system based on the LDC (line drop compensation) method of SVR (step voltage regulator) to improve the hosting capacity when large-scale PV systems are installed in a distribution system. Moreover, this paper presents a modeling of a complex distribution system, which is composed of a large-scale PV system and SVR with the LDC method using PSCAD/EMTDC. The simulation results confirmed that the proposed algorithm and modeling are useful and practical tools for improving the hosting capacity of a PV system because the customer voltages are maintained within the allowable voltage limits even if 6.5[MW] of the PV system is installed in a distribution system with the LDC method of SVR.

A Control Method of Phase Angle Regulator for Parallel-Feeding Operation of AC Traction Power Supply System (교류전기철도 병렬급전 운영을 위한 위상조정장치 제어기법)

  • Lee, Byung Bok;Choi, Kyu Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.672-678
    • /
    • 2020
  • The parallel-feeding operation of an AC traction power supply system has the advantages of extending the power supply section and increasing the power supply capacity by reducing the voltage drop and peak demand caused by a train operation load. On the other hand, the parallel-feeding operation is restricted because of the circulating power flow induced from the phase difference between substations. Moreover, the power supply capacity is limited because of the unbalanced substation load depending on the trainload distribution, which can be changed by the train operation along the railway track. This paper suggests a Thyristor-controlled Phase Angle Regulator (TCPAR) to reduce the circulating power flow and the unbalanced substation load, which depends on the phase difference and the trainload distribution and provides a feasibility study. A dedicated control model of TCPAR is also provided, which uses substation power supplies as the input to control the circulating power flow and an unbalanced substation load depending on the phase difference and the trainload distribution. Simulation studies using PSCAD/EMTDC shows that the proposed TCPAR control model can reduce the circulating power flow and the unbalanced substation load depending on the phase difference and the trainload distribution. The proposed TCPAR can extend the parallel-feeding operation of an AC traction power system and increase the power supply capacity.

Compensation of Instantaneous Voltage Drop at AC Railroad System with Single-Phase Distributed STATCOM (전기철도 급전시스템의 순시전압강하 보상을 위한 단상 배전 STATCOM의 적용)

  • Kim, Jun-Sang;Lee, Seung-Hyuk;Kim, Jin-O;Lee, Jun-Kyung;Jung, Hyun-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2007
  • An AC electrical railroad system has rapidly changing dynamic single-phase load, and at a feeding substation, three-phase electric power is transformed to the paired directional single-phase electric power. There is a great difference in electrical phenomenon between the load of AC electrical railroad system and that of general power system. Electric characteristics of AC electrical railroad's trainload are changed continuously according to the traction, operating characteristic, operating schedule, track slope, etc. Because of the long feeding distance of the dynamic trainload, power quality problems such as voltage drop, voltage imbalance and harmonic distortion my also occur to AC electrical railroad system. These problems affect not only power system stability, but also power quality deterioration in AC electrical railroad system. The dynamic simulation model of AC electrical railroad system presented by PSCAD/EMTDC is modeled in this paper, andthen, it is analyzed voltage drop for AC electrical railroad system both with single-phase distributed STATCOM(Static Synchronous Compensator) installed at SP(Sectioning Post) and without.

A Study on the Transient Operation Algorithm in Micro-grid based on CVCF Inverter (CVCF 인버터 기반의 Micro-grid에 있어서 과도상태 운용알고리즘에 관한 연구)

  • Lee, Hu-Dong;Choi, Sung-Sik;Nam, Yang-Hyun;Son, Joon-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.526-535
    • /
    • 2018
  • Recently, in order to reduce the $CO_2$ emission in the island area, countermeasures to operate power system in a stable manner are being researched due to decrease of the operation rate in diesel generators and the increase of renewable energy sources. The phenomenon of energy sinking can be occurred if the output of renewable energy sources is larger than customer loads. Voltage of CVCF(constant voltage & constant frequency) battery could be increased rapidly according to the condition of SOC(state of charge) and blackout could be occurred due to shut-down of CVCF inverter, at carbon free island micro-grid based on the CVCF inverter. In order to overcome these problems, this paper proposes a transient operation algorithm in CVCF based micro-grid which in advance prevents shut-down of CVCF inverter during the energy sinking. And also this paper proposes the modeling of micro-grid including CVCF inverter, PV system, customer load using PSCAD/EMTDC S/W. From the results of micro-grid modeling based on the proposed algorithm, it is confirmed that CVCF based micro-grid can properly prevent shut-down of CVCF inverter according to SOC and battery voltage of CVCF inverter when energy sinking is occurred.

A Study on the Countermeasure Algorithm for Power System Disturbance in Large Scale Fuel Cell Generation System (대용량 연료전지발전시스템의 계통외란방지알고리즘에 관한 연구)

  • Kim, Gi-Young;Oh, Yong-Taek;Kim, Byung-Ki;Kang, Min-Kwan;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5550-5558
    • /
    • 2015
  • Recently, fuel cell with high energy efficiency and low CO2 emission is energetically interconnected with power system. Especially, FCGS(Fuel Cell Generation System) which usually operates at high temperature, is being developed and installed in the form of large scale system. However, it is reported that power system disturbances related to surge, harmonic and EMI have caused several problems such as malfunction of protection device and damage of control device in the large scale FCGS. In order to solve these problems, this paper presents a modeling of operation characteristics of FCGS by PSCAD/EMTDC, ETAP, P-SIM software. And also, this paper proposes countermeasure algorithms to prevent power system disturbances. From the simulation results, it is confirmed that the proposed algorithm is useful method for the stable operation of large scale FCGS.

Modeling and Strategic Startup Scheme for Large-Scaled Induction Motors (대용량 유도기 기동 특성 모델링 및 전략적 기동 방법에 관한 연구)

  • Jung, Won-Wook;Shin, Dong-Yeol;Lee, Hak-Ju;Yoon, Gi-Gab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.748-757
    • /
    • 2007
  • This paper is intended to solve the technical problem that fails in large-capacity induction motor starting due to serious voltage drop during starting period. One induction motor that is established already can reach in steady-state using reactor starting method but the voltage magnitude of PCC (point of common coupling) has dropped down a little. When the same capacity induction motor is installed additionally in the PCC, where the existing induction motor is operating, voltage drop becomes more serious by starting of additional induction motor. As a result, the additional induction motor fails in starting. Therefore, voltage compensation method is proposed so that all of two induction motors can be started completely. First, modeling technique is described in order to implement starting characteristics of large induction motor. And then, this paper proposes strategic starting scheme by proper voltage compensation that use no-load transformer tap control (NLTC) and step voltage regulator (SVR) for starting of two large induction motors successfully and improving the feeding network voltage profile during the starting period. The induction motor discussed in this paper is the pumped induction motor of 2500kVA capacity that is operating by KOWACO (Korea Water Resources Corporation). Modeling and simulation is conducted using PSCAD/EMTDC software.

  • PDF

A study on the Operation Algorithm for Bi-directional Sectonalizer in Distribution System Interconnected with Distributed Generations (분산전원이 연계된 배전계통의 양방향 구간개폐기의 동작 알고리즘에 관한 연구)

  • Yoon, Gi-Gab;Jeong, Jum-Soo;An, Tae-Pung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1802-1809
    • /
    • 2009
  • Abstract The typical distribution systems have the power flow from distribution substations (sources) to customers (load) only as one direction. However, in the case where distributed generations (DG) such as PV system and wind power systems are connected to distribution systems, the DG output variations to distribution systems, so called reverse power flow, may cause the bi-directional power flow. So, the reverse power flow has severe impacts on typical power system, for example power quality problems, protection coordination problems, and so on. Especially, protection devices (sectionalizer) in primary feeder of distribution system interconnected with distributed generations may cause problems of malfunction, and then many customers could have problems like an interruption. So, this paper presents the bi-directional operation algorithm of protection devices to overcome the problems like mal-function. And, also this paper shows the effectiveness of proposed method by using both PSCAD/EMTDC software and test facility of protection devices to simulate the field distribution systems.

Analysis of Operation Characteristics of DC Circuit Breaker with Superconducting Current Limiting Element (초전도 전류제한소자를 적용한 DC 차단기의 동작 특성 분석)

  • Jung, Byung-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1069-1074
    • /
    • 2020
  • Since DC has no zero point, an arc occurs when the DC circuit breaker performs a shutdown operation. In this case, a fatal accident may occur in the circuit breaker or in the grid, depending on the magnitude of the arc. Therefore, the shutdown performance and the reliability of the circuit breaker are important in the commercialization of HVDC. In this study, a superconducting LC circuit breaker was proposed to improve the performance and the reliability of the DC circuit breaker. The superconducting LC circuit breaker applied a superconducting coil to the inductor of the existing LC circuit breaker. Other than limiting the initial fault current, it also creates a stable zero point in the event of a fault current. To verify this, simulation was performed through EMTDC/PSCAD. Furthermore, the superconducting LC circuit breaker was compared with the LC circuit breaker with a normal coil. As a result, it was found that the LC circuit breaker with the superconducting coil limited the initial fault current further by approximately 12 kA compared to the LC circuit breaker with a normal coil. This reduced the arc extinguish time by approximately 0.16 sec, thereby decreasing the elctrical power burden on the circuit breaker.

A Study on Protection Coordination Algorithm for Separating Fault Section in LVDC Distribution System (LVDC 배전계통에 있어서 사고구간분리 보호협조 알고리즘에 관한 연구)

  • Kang, Min-Kwan;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.768-776
    • /
    • 2021
  • Current protection-coordination methods use the reverse time characteristics of the T-C curve, which is not effective for a LVDC distribution system because the protective operation time of converters and DC circuit breakers is much faster than AC protection devices. Therefore, an algorithm is proposed for fault-section isolation using the fault current slope to minimize the blackout region and coordinate between converters and protection devices in a rapid and accurate manner. The method deals with the slope characteristics of a fault current, which may depend on the fault location in an LVDC distribution system. Thus, an LVDC distribution system can be operated in a stable manner by isolating the fault section selectively before the shutdown of the main converter using slope characteristics, which change in proportion to the line impedance and fault location. A 1.5-kV LVDC distribution system was modeled to verify the effectiveness of the proposed algorithm using PSCAD/EMTDC. The system is composed of a distribution substation, LVDC converter, and distribution lines. The simulation results confirm that the proposed algorithm is a useful tool for minimizing the fault section in an LVDC distribution system.

Analysis of Control Algorithm for Instantaneous Voltage Sag Corrector (순시적인 전압 sag 보상기에 대한 제어 알고리즘의 해석)

  • 이상훈;김재식;최재호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.173-179
    • /
    • 2001
  • This paper represents the control algorithm of the instantaneous voltage sag corrector for the power quality enhancement in distribution line. Especially, a novel detection technique of the symmetrical components is proposed for the analysis of the three-phase unbalanced and asymmetrical problems caused by the single line ground fault which is he most frequent event. This proposed method is based on the simple calculation and the control references of the symmetrical components for voltage compensation can be described as dc value without any other phase detection procedure. And also, for the generation of the reference voltages, the UF and MF defined by IEC is considered. Using this proposed control algorithm, the compensator has the fast dynamic characteristics and the THD of the compensated voltage waveform is very low. Finally, the validity of the proposed algorithm is proved by the PSCAD/EMTDC simulation and experimental results.

  • PDF