• Title/Summary/Keyword: EML(Emission Material Layer)

Search Result 21, Processing Time 0.027 seconds

A Study on the Emission Properties of Organic Electroluminescence Device by Various Stacked Organics Structures (유기물 적층 구조에 따른 유기 발광 소자의 발광 특성에 관한 연구)

  • 노병규;김중연;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.943-949
    • /
    • 2000
  • In this paper, the single and double heterostructure organic light-emitting devices(OLEDs) were fabricated. The single heterostructure OLED(TYPE 1) is consisted of TPD as a HTL(hole transfer layer) and Alq$_3$as an EML(emitting layer). The double heterostructure OLED(TYPE 2) is consisted of TPD as a HTL, Alq$_3$as an EML and PBD as an ETL(electron transfer layer). The another double heterostructure OLED(TYPE 3) is consisted of TPD as a HTL, PBD as an EML and Alq$_3$as an ETL. We obtained a strong green emission device with maximum EL emission wavelength 500nm in TYPE 3. When the applied voltage was 12V, the emission luminescence was 120.9cd/㎡. The chromaticity index of TYPE 3 was x=0.29, y=0.50. In the characteristic plot of current-voltage, TYPE 3 device was turned on at 6.9V. This voltage was a fairly low turn-on voltage. TYPE 1 and 2 device were turned on at 10V and 8.9V respectively. These types showed no good properties over that of TYPE 3.

  • PDF

Investigation of the Green Emission Profile in PHOLED by Gasket Doping

  • Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.226-226
    • /
    • 2016
  • PHOLED devices which have the structure of ITO/HAT-CN(5nm)/NPB(50nm)/EML(30nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) are fabricated to investigate the green emission profile in EML by using a gasket doping method. CBP and Ir(ppy)3 (2% wt) are co-deposited homogeneously as a background material of EML for green PHOLED, then a 5nm thickness of additionally doped layer by Ir(btp)2 (8% wt) is formed as a profiler of the green emission. The total thickness of the EML is maintained at 30nm while the distance of the profiler from the HTL/EML interface side (x) is changed in 5nm steps from 0nm to 25nm. As shown in Fig. 1, the green (513nm) peak from Ir(ppy)3 is not observed when Ir(btp)2 is also doped homogeneously because Ir(ppy)3 works as an gasket dopant of the Ir(btp)2 :CBP system. Therefore, in this experment, Ir(btp)2 can be used as a profiler of the green emission in CBP:Ir(ppy)3 system. The emission spectra from the PHOLED devices with different x are shown in Fig. 2. In this gasket doping system, stronger red peak means more energy transfer from green to red dopant or higher exciton density by green dopant. To find the green emission profile, the external quantum efficiency (EQE) at 3mA/cm2 for red peaks are calculated. More green light emission at near EML/HBL interface than that of HTL/EML is observed (insert of Fig. 2). This means that the higher exciton density at near EML/HBL interface in homogeneously doped CBP with Ir(ppy)3. As shown in Fig. 3, excitons can be quenched easily to HTL(NPB) because the T1 level of HTL(2.5eV) is relatively lower than that of EML(2.6eV). On the other hand, the T1 level of HBL(2.7eV) is higher than that of EML.

  • PDF

Characteristics of blue phosphorescent OLED with partially doped simple structure (부분 도핑을 이용한 단순구조 청색인광 OLED 특성)

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.156-156
    • /
    • 2010
  • We have developed highly efficient blue phosphorescent organic light-emitting devices (OLED) with simplified architectures using blue phosphorescent material. The basis device structure of the blue PHOLED was anode / emitting layer (EML) / electron transport layer (ETL) / cathode. The dopant was partially doped into the host layer for investigating recombination zone, current efficiency, and emission characteristics of the blue PHOLEDs.

  • PDF

Effect of Doping Profile of Blue Activator on the Emission Characteristics of White Organic Light Emitting Diodes (청색 활성제의 첨가 형상 변화에 따른 백색 OLED의 발광 특성)

  • Lim, Byung-Gwan;Seo, Jung-Hyun;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.486-490
    • /
    • 2011
  • To investigate the effect of two-emission-layer structure on the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs), the PHWOLEDs with two different emission layers, blue EML(29 nm, FIrpic-doped mCP) and red EML(1 nm, Ir(pq)$_2$acac-doped CBP)), following host-guest system were fabricated. The bi-layered blue EML was composed of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 7, 10, 15, 20, and 25 vol.%, respectively). When the concentration of FIrpic was increased from 7 to 15 vol.%, light emission luminance, current efficiency, and external quantum efficiency were increased. On the contrary, when the concentration of FIrpic was increased to more than 20 vol.%, light emission luminance, current efficiency, and external quantum efficiency were decreased. The PHWOLEDs with the bi-layered blue EML structure of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 15 vol.%) showed current efficiency of 29.7 cd/A and external quantum efficiency (EQE) of 16.6% at 1,000 $cd/cm^2$.

Solution-Processed Quantum Dot Light-Emitting Diodes with TiO2 Nanoparticles as an Electron Transport Layer and a PMMA Insulating Layer (TiO2를 전자수송층으로 적용하고 PMMA 절연층을 삽입한 용액공정 기반 양자점 전계 발광 소자의 활용)

  • Kim, Bomi;Kim, Jungho;Kim, Jiwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.93-97
    • /
    • 2022
  • We report highly efficient quantum dot light-emitting diodes (QLEDs) with TiO2 nanoparticles (NPs) as an alternative electron transport layer (ETL) and poly (methyl methacrylate) (PMMA) as an insulating layer. TiO2 NPs were applied as ETLs of inverted structured QLEDs and the effect of the addition of PMMA between ETL and emission layer (EML) on device characteristics was studied in detail. A thin PMMA layer supported to make the charge balance in the EML of QLEDs due to its insulating property, which limits electron injection effectively. Green QLEDs with a PMMA layer produced the maximum luminance of 112,488 cd/m2 and a current efficiency of 25.92 cd/A. We expect the extended application of TiO2 NPs as the electron transport layer in inverted structured QLEDs device in the near future.

A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode (전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Jeon, Yongmin;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

OLEDs's Voltage-Current Characteristics with a Thickness Variation of Hole Transport Layer and Emission Layer (OLEDs의 정공 수송층 및 발광층의 두께 변화에 따른 전압-전류 특성)

  • Yang, Jae-Hoon;Lee, Young-Hwan;Kim, Weong-Jong;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.74-75
    • /
    • 2005
  • Organic Light Emitting Diodes are attractive as alternative display components because of their relative merits of being self-emitting, having large intrinsic viewing angle and fast switching speed. But because of their relatively short history of development, much remains to be studied in terms of their basic device physics and design, manufacturing techniques, stability and so on. We invested electrical properties of N, N-diphenyl-N, N bis (3-methyphenyl)-1, 1'-biphenyl-4, 4'-diamine and tris-8-hydroxyquinoline aluminum when their thickness were changed variedly from 3:7 to 7:3 of their thickness ratios. And we also studied their optimal thickness respectively.

  • PDF

Emission Characteristics of White OLEDs with Various Hole Transport Layers (정공수송층에 따른 백색 OLED의 발광 특성)

  • Lim, Byung-Gwan;Seo, Jung-Hyun;Ju, Sung-Hoo;Paek, Kyeong-Kap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.983-987
    • /
    • 2010
  • In order to investigate the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs) according to various hole transport layers (HTLs), PHWOLEDs composed of HTLs whose structure are NPB/TCTA, NPB/mCP and NPB/TCTA/mCP, two emissive layers (EMLs) which emit two-wavelengths of light (blue and red), and electron transport layer were fabricated. The applied voltage, power efficiency, and external quantum efficiency at a current density of $1 mA/cm^2$ for the fabricated PHWOLEDs were 7.5 V, 11.5 lm/W, and 15%, in case of NPB/mCP, 5 V, 14.8 lm/W, and 13.7%, in case of NPB/TCTA, and 5.5 V, 14.6 lm/W, and 15%, in case of NPB/TCTA/mCP in the hole transport layer, respectively. High emission efficiency can be obtained when the amount of hole injection from anode is balanced out by the amount of electron injection from the cathode to EML by using NPB/TCTA/mCP structured HTL.

Emission Characteristics of White PHOLEDs with Different Emitting Layer Structures (발광층 구조에 따른 백색 인광 OLED의 발광 특성)

  • Seo, Jung-Hyun;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.456-461
    • /
    • 2012
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with red/blue, blue/red and red/blue/red emitting layer (EML) structures were fabricated using a host-dopant system. In case of white PHOLEDs with red/blue structure, the best efficiency was obtained at a structure of red (15 nm)/blue (15 nm). But the emission color was blue-shifted white. In case of white PHOLEDs with blue/red structure, the better color purity and efficiency were observed at a blue (29 nm)/red (1 nm) structure. For additional improvement of color purity in white PHOLEDs with blue (29 nm)/red (1 nm) EMLs, we fabricated white PHOLEDs with red (1 nm)/blue (28 nm)/red (1 nm) structure. The current efficiency, external quantum efficiency, and CIE (x, y) coordinate were 27.2 cd/A, 15.1%, and (0.382, 0.369) at 1,000 $cd/m^2$, respectively.

A Study on the Effects of Micro Cavity on the HTL Thicknesses on the Top Emission Organic Light Emitting Diode (유기발광 다이오드의 정공수송층 두께에 따른 미소 공진 효과의 영향에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Seong, Jin-Wook;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.91-94
    • /
    • 2022
  • Top emission organic light-emitting diode is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device. Unlike BEOLED, TEOLED contain semi-transparent metal cathode. Because of semi-transparent cathode, micro cavity effect occurs in TEOLED. We optimized this effect by changing the thickness of hole injection layer. Device consists of is indium-tin-oxide / N,N'-Di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl-4,4'-diamine (x nm) / tris-(8-hydroxyquinoline) aluminum (50nm) / LiF(0.5nm) / Mg:Ag (1:9), and we changed NPB thickness which is used as HTL in our device in order to study how micro cavity effects are changed by optical path. As the results, NPB thickness at 35nm showed the current efficiency of 8.55Cd/A.