• Title/Summary/Keyword: EMG signals

Search Result 335, Processing Time 0.021 seconds

A Study or Analysis of EMG Signals using Wavelet transform (웨이브렛 변환을 이용한 근전도 신호 분석에 관한 연구)

  • Kang, S.C.;Shin, C.K.;Lee, S.M.;Kwon, J.W.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.59-62
    • /
    • 1997
  • In this paper, we used Wavelet Transform to analyze EMG signals. Wavelet transform has an advantage of dividing the nonstationary signals into the high frequency and low frequency band effectively. For determining the characterized value of EMG signals, it was wavelet-transformed, absoluted, and integral-calculated. As the result, we acquired characterized value of each signals, and acknowledged the differences among them. It was concluded that the results of this study using wavelet transform could be used to powerful tool or analysis of EMG signals.

  • PDF

Knee-wearable Robot System Using EMG signals (근전도 신호를 이용한 무릎 착용 로봇시스템)

  • Cha, Kyung-Ho;Kang, Soo-Jung;Choi, Young-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.286-292
    • /
    • 2009
  • This paper proposes a knee-wearable robot system for assisting the muscle power of human knee by processing EMG (Electromyogram) signals. Although there are many muscles affecting the knee joint motion, the rectus femoris and biceps femoris among them play a core role in the extension and flexion motion, respectively, of the knee joint. The proposed knee-wearable robot system consists of three parts; the sensor for measuring and processing EMG signals, controller for estimating and applying the required knee torque, and actuator for driving the knee-wearable mechanism. Ultimately, we suggest the motion control method for knee-wearable robot system by processing the EMG signals of corresponding two muscles in this paper. Also, we show the effectiveness of the proposed knee-wearable robot system through the experimental results.

A Study on Intelligent Trajectory Control for Prosthetic Arm by Pattern Recognition & Force Estimation Using EMG Signals (근전도신호의 패턴인식 및 힘추정을 통한 의수의 지능적 궤적제어에 관한 연구)

  • 장영건;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.455-464
    • /
    • 1994
  • The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMG signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements.

  • PDF

Electromyography-signal-based muscle fatigue assessment for knee rehabilitation monitoring systems

  • Kim, Hyeonseok;Lee, Jongho;Kim, Jaehyo
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.345-353
    • /
    • 2018
  • This study suggested a new EMG-signal-based evaluation method for knee rehabilitation that provides not only fragmentary information like muscle power but also in-depth information like muscle fatigue in the field of rehabilitation which it has not been applied to. In our experiment, nine healthy subjects performed straight leg raise exercises which are widely performed for knee rehabilitation. During the exercises, we recorded the joint angle of the leg and EMG signals from four prime movers of the leg: rectus femoris (RFM), vastus lateralis, vastus medialis, and biceps femoris (BFLH). We extracted two parameters to estimate muscle fatigue from the EMG signals, the zero-crossing rate (ZCR) and amplitude of muscle tension (AMT) that can quantitatively assess muscle fatigue from EMG signals. We found a decrease in the ZCR for the RFM and the BFLH in the muscle fatigue condition for most of the subjects. Also, we found increases in the AMT for the RFM and the BFLH. Based on the results, we quantitatively confirmed that in the state of muscle fatigue, the ZCR shows a decreasing trend whereas the AMT shows an increasing trend. Our results show that both the ZCR and AMT are useful parameters for characterizing the EMG signals in the muscle fatigue condition. In addition, our proposed methods are expected to be useful for developing a navigation system for knee rehabilitation exercises by evaluating the two parameters in two-dimensional parameter space.

Surface EMG Amplitude Estimation by using Spike and Turn Variables (Spike와 Turn 변수를 이용한 표면근전도 신호의 진폭 추정)

  • Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.124-130
    • /
    • 2018
  • The EMG amplitude estimator, which has been investigated as an indicator of muscle force, is of high relevance not only in biomechanical studies but also more and more in clinical applications. This paper presents a new approach to estimate surface EMG amplitude by using the mean spike and mean turn amplitude(MSA and MTA) variables. Surface EMG signals, a total of 198 signals, were recorded from biceps brachii muscle over the range of 20-80%MVC isometric contraction and performance of the MSA and MTA variables applied to amplitude estimation of the EMG signals were investigated. To examine the performance, a SNR(signal-to-noise ratio) was computed from each amplitude estimate. The results of the study indicate that MSA and MTA amplitude estimations with first order whitening filter and 300[ms]-350[ms] moving average window length are optimal and show better performance(mean SNR improvement of 6%-15%) than the most frequently used variables(ARV and RMS).

Pattern Recognition of EMG Signal using Artificial Neural Network (신경회로망을 이용한 근전도 신호의 특성분석 및 패턴 분류)

  • Yi, Seok-Joo;Lee, Sung-Hwan;Cho, Young-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.769-771
    • /
    • 2000
  • In this paper, pattern recognition scheme for EMG signal using artificial neural network is proposed. For manipulating ability, the movements of human arm are classified into several categories EMG signals of appropriate muscles are collected during arm movement. Patterns of EMG signals of each movement are recognized as follows: 1) The features of each EMG signal are extracted. 2) With these features, the neural network is trained by using feedforward error back-propagation (FFEBP) algorithm. The results show that the arm movements can be classified with EMG signals at high accuracy.

  • PDF

Simple SOM Method for Pattern Classification of the EMG Signals (EMG 신호의 패턴 분류를 위한 간단한 SOM 방식)

  • Lim, Joong-Kyu;Eom, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.4
    • /
    • pp.31-36
    • /
    • 2001
  • In this paper we propose a method of pattern classification of the hand movement using EMG signals through Self-organizing feature map. Self-organizing feature map is an artificial neural network which organizes its output neuron through learning and therefore it can classify input patterns. The raw EMG signals become direct input to the Self-organizing feature map. The simulation and experiment results showed the effectiveness of the classification of EMG signal using the Self-organizing feature map.

  • PDF

Predicting the Human Multi-Joint Stiffness by Utilizing EMG and ANN (인공신경망과 근전도를 이용한 인간의 관절 강성 예측)

  • Kang, Byung-Duk;Kim, Byung-Chan;Park, Shin-Suk;Kim, Hyun-Kyu
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Unlike robotic systems, humans excel at a variety of tasks by utilizing their intrinsic impedance, force sensation, and tactile contact clues. By examining human strategy in arm impedance control, we may be able to teach robotic manipulators human''s superior motor skills in contact tasks. This paper develops a novel method for estimating and predicting the human joint impedance using the electromyogram(EMG) signals and limb position measurements. The EMG signal is the summation of MUAPs (motor unit action potentials). Determination of the relationship between the EMG signals and joint stiffness is difficult, due to irregularities and uncertainties of the EMG signals. In this research, an artificial neural network(ANN) model was developed to model the relation between the EMG and joint stiffness. The proposed method estimates and predicts the multi joint stiffness without complex calculation and specialized apparatus. The feasibility of the developed model was confirmed by experiments and simulations.

  • PDF

A Study on the Pattern Recognition of EMG Signals for Head Motion Recognition (머리 움직임 인식을 위한 근전도 신호의 패턴 인식 기법에 관한 연구)

  • 이태우;전창익;이영석;유세근;김성환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.103-110
    • /
    • 2004
  • This paper proposes a new method on the EMG AR(autoregressive) modeling in pattern recognition for various head motions. The proper electrode placement in applying AR or cepstral coefficients for EMG signature discrimination is investigated. EMG signals are measured for different 10 motions with two electrode arrangements simultaneously. Electrode pairs are located separately on dominant muscles(S-type arrangement), because the bandwidth of signals obtained from S-type placement is wider than that from C-type(closely in the region between muscles). From the result of EMG pattern recognition test, the proposed mIAR(modified integrated mean autoregressive model) technique improves the recognitions rate around 17-21% compared with other the AR and cepstral methods.

Movement Intention Detection of Human Body Based on Electromyographic Signal Analysis Using Fuzzy C-Means Clustering Algorithm (인체의 동작의도 판별을 위한 퍼지 C-평균 클러스터링 기반의 근전도 신호처리 알고리즘)

  • Park, Kiwon;Hwang, Gun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2016
  • Electromyographic (EMG) signals have been widely used as motion commands of prosthetic arms. Although EMG signals contain meaningful information including the movement intentions of human body, it is difficult to predict the subject's motion by analyzing EMG signals in real-time due to the difficulties in extracting motion information from the signals including a lot of noises inherently. In this paper, four Ag/AgCl electrodes are placed on the surface of the subject's major muscles which are in charge of four upper arm movements (wrist flexion, wrist extension, ulnar deviation, finger flexion) to measure EMG signals corresponding to the movements. The measured signals are sampled using DAQ module and clustered sequentially. The Fuzzy C-Means (FCMs) method calculates the center values of the clustered data group. The fuzzy system designed to detect the upper arm movement intention utilizing the center values as input signals shows about 90% success in classifying the movement intentions.