Communications for Statistical Applications and Methods
/
v.15
no.1
/
pp.1-11
/
2008
For a large data set the high computational cost of estimating the parameters of normal mixtures with the conventional EM algorithm is crucially impedimental in applying the algorithm to the areas requiring high speed computation such as real-time speech recognition. Simulations show that the binned EM algorithm, being compared to the standard one, significantly reduces the cost of computation without loss in accuracy of the final estimates.
EM algorithm has good convergence rate for numerical procedures which converges on very small step. In the case of proportion estimation in a mixed distribution which has very big incomplete data or of update of new data continuously, however, EM algorithm highly depends on a initial value with slow convergence ratio. There have been many studies to improve the convergence rate of EM algorithm in estimating the proportion parameter of a mixed data. Among them, dynamic EM algorithm by Hurray Jorgensen and Titterington algorithm by D. M. Titterington are proven to have better convergence rate than the standard EM algorithm, when a new data is continuously updated. In this paper we suggest dynamic EM algorithm and Titterington algorithm for the estimation of a mixed Poisson distribution and compare them in terms of convergence rate by using a simulation method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.4C
/
pp.397-402
/
2009
Accurate estimation of time-selective fading channel is a difficult problem in OFDM(Orthogonal Frequency Division Multiplexing) system. There are many channel estimation algorithms that are very weak in noisy channel. For solving this problem, we use EM (Expectation-Maximization) algorithm for iterative optimization of the data. We propose an EM-LPC algorithm to estimate the time-selective fading. The proposed algorithm improves of the BER performance compared to EM based channel estimation algorithm and reduces the iteration number of the EM loop. We simulated the uncoded system. If coded system use the EM-LPC algorithm, the performance are enhanced because of the coding gain. The EM-LPC algorithm is able to apply to another communication system, not only OFDM systems. The image processing of the medical instruments that the demand of accurate estimation can also use the proposed algorithm.
This paper presents a new method of significantly improving conventional Bayesian statistical text classifier by incorporating accelerated EM(Expectation Maximization) algorithm. EM algorithm experiences a slow convergence and performance degrade in its iterative process, especially when real online-textual documents do not follow EM's assumptions. In this study, we propose a new accelerated EM algorithm with uncertainty-based selective sampling, which is simple yet has a fast convergence speed and allow to estimate a more accurate classification model on Naive Bayesian text classifier. Experiments using the popular Reuters-21578 document collection showed that the proposed algorithm effectively improves classification accuracy.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.6
/
pp.523-528
/
2015
In this paper, we propose a new multiresolutional and dynamic approach of the EM algorithm. EM is a very popular and powerful clustering algorithm. EM, however, has problems that indexes multiresolution data and requires a priori information on a proper number of clusters in many applications, To solve such problems, the proposed EM algorithm can impose a multiresolution kd-tree structure in the E-step and allocates a cluster based on sequential data. To validate clusters, we use a merge criteria for cluster merging. We demonstrate the proposed EM algorithm outperforms for texture image segmentation.
Communications for Statistical Applications and Methods
/
v.29
no.2
/
pp.277-286
/
2022
Due to the uniquely slow convergence speed of the EM algorithm, it suffers form a lot of processing time until the desired deconvolution image is obtained when the image is large. To cope with the problem, in this paper, an immediate solution of the EM algorithm is provided under the Gaussian image model. It is derived by finding the recurrent formular of the EM algorithm and then substituting the results repeatedly. In this paper, two types of immediate soultion of image deconboution by EM algorithm are provided, and both methods have been shown to work well. It is expected that it free the processing time of image deconvolution because it no longer requires an iterative process. Based on this, we can find the statistical properties of the restored image at specific iterates. We demonstrate the effectiveness of the proposed method through a simple experiment, and discuss future concerns.
Communications for Statistical Applications and Methods
/
v.19
no.1
/
pp.157-168
/
2012
The EM algorithm is the most important tool to obtain the maximum likelihood estimator in finite mixture models due to its stability and simplicity. However, its convergence rate is often slow because the conventional EM algorithm is based on a large missing data space. Several techniques have been proposed in the literature to reduce the missing data space. In this paper, we review existing methods and propose a new EM algorithm for Gaussian mixtures, which reduces the missing data space while preserving the stability of the conventional EM algorithm. The performance of the proposed method is evaluated with other existing methods via simulation studies.
The Kalman filter is a recursive Linear Estimator for the linear dynamic systems(LDS) affected by two different noises called process noise and measurement noise both of which are uncorrelated white. The Expectation Maximization(EM) algorithm is employed in this paper as a preprocessor to reinforce the effectiveness of Kalman estimator. Particularly, we focus on the relation between Kalman filter and EM algorithm in the LDS. In this paper, we propose a new algorithm to improve the performance on the parameter estimation via EM algorithm, which improves the overall process of Kalman filtering. Since Kalman filter algorithm not only needs the system parameters but also is very sensitive the initial state conditions, the initial conditions decided through EM turns out to be very effective. In experiments, the computer simulation results ate provided to demonstrate the superiority of the proposed algorithm.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.529-531
/
2001
We present an expectation-maximization algorithm for principal component analysis via orthogonalization. The algorithm finds actual principal components, whereas previously proposed EM algorithms can only find principal subspace. New algorithm is simple and more efficient thant probabilistic PCA specially in noiseless cases. Conventional PCA needs computation of inverse of the covariance matrices, which makes the algorithm prohibitively expensive when the dimensions of data space is large. This EM algorithm is very powerful for high dimensional data when only a few principal components are needed.
International Journal of Internet, Broadcasting and Communication
/
v.6
no.1
/
pp.16-22
/
2014
Clustering methods such as k-means and EM are the group of classification and pattern recognition, which are used in management science and literature search widely. In this paper, k-means and EM algorithm are compared the performance using by Weka. The winning Lottery numbers of 567 cases are experimented for our study and presentation. Processing speed of the k-means algorithm is superior to the EM algorithm, which is about 0.08 seconds faster than the other. As the result it is summerized that EM algorithm is better than K-means algorithm with comparison of accuracy, precision and recall. While K-means is known to be sensitive to the distribution of data, EM algorithm is probability sensitive for clustering.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.