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Abstract

We present an expectation-maximization algorithm for principal component analysis via

orthogonalization. The algorithm finds actual principal components, whereas previously
proposed EM algorithms can only find principal subspace. New algorithm is simple and
more efficient than probabilistic PCA specially in noiseless cases. Conventional PCA

needs computation of inverse of the covariance matrices, which makes the algorithm
prohibitively expensive when the dimension of data space is large. This EM algorithm is
very powerful for high dimensional data when only a few principal components are

needed.

1. Introduction

Principal component analysis 18 a multivariate
technique which reduces the dimensionality and
decorrelates the output data. The reduced data can
best preserve the variance of data, so that it is
widely used in data compression, image processing,
etc. Scientists who are dealing with high
dimensional data with low dimensional structure
may need dimensionality reduction ways such as
PCAfprincipal component analysis), and variety of
methods for PCA has been introduced in
literatures.[7]

Nevertheless, existing methods for PCA have
several shortcomings. The classical eigenvalues
analysis is quick and exact method for a low
dimensional data, but not suitable for wvery
high-dimensional or large data set. Computing a
full covariance matrix is very laborious, and
specially inefficient when only a few principal
components are required. PCA neural networks
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such as Hebbian type or auto-associative network
are not optimally scaled gradient methods, and hold
redundancy of computation in spite of biological
motivations.[5,6] In fact, optimal gradient recalling
makes the additive network model equal to
noiseless probabilistic PCA or multiplicative update
rule of non-negative matrix factorization. But
noiseless probabilistic PCA algorithm has rotational
ambiguity, which means that it finds only PCA
subspace whose axes are linear combinations of
orthogonal  principal axesf12] Also, it is
time-consuming to compute matrix inversion per

each step.
In this paper, we suggest a new EM algorithm
for PCA via orthogonalization. The developed

method provides two advantages. First, the EM
update rules converge to the actual principal
components and decorrelated output data as well as
principal subspace. Second, the orthogonalization
processes cancel with respect to matrix nversion,
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s0 we don't have to do matrix inversion as it was
done in noiseless probabilistic PCA algorithm, so
that it serves a triple purpose of simple detection of
PCA subspace, decorrelation of output data and
orthogonal basis.

2. Equivalence for PCA

Dimensionality reduction, variance maximization
and a linear orthogonal model are  important
properties of PCA. The dimensionality reduction is
a fundamental property. It is a method for low
dimensional treatment of data, so that dimensional
reduction is naturally required. Second property is
that the reduced output data should best contain
variance of data. That is, square error function
should be minimized and first axis should be
oriented along the direction in which the data has
its highest variance. Similarly, subsequent axes are
onented so as to account for as much as possible
of the vadance in the data, subject to the
constraint that they must be orthogonal to
preceeding axes. The fact that PCA defines a
linear, orthogonal model space gives it favorable
computational properties, though it is its main
limitation. Then one obtains orthogonal basis and
decorrelated data as well as PCA subspace.
Therefore PCA may be exactly executed by three

independent constraints - least square error,
orthogonal basis, decorrelated output data.f7]
e = |V - wHII? (1
ww = DY (2)
Hi" = D} (3)
(where D is the diagonal norm matrix of W

or H row vectors[8] and W is
and H is decorrelated output data.)

column vectors
orthogonal basis

Least square error is a good error measure for
finding PCA subspace, but not for decorrelating
output data and orienting toward actual principal
direction. Orthogonality of the basis doesn’t mean
decorrelation of output data.  Above  three
constraints assure us of actual principal component.
Because of magnitude ambiguity, solutions under
the constraints justly form manifolds, not one point
in abstract data space.

3. Orthogonalization

With respect to matrix factorization we should
find W and H that approximate V(input data) by
the product WH.

V = WH {4)

There are two approaches for actual PCA EM

algorithm. - noiseless probabilistic PCA and
nonnegative matrix factorization[3].

Noiseless probabilistic PCA

Noiseless probabilistic PCA is a fast EM

algorithm for finding PCA subspace from high
dimensional data space. It can also be proven in the
framework of deterministic model, where H or W
of each step is determined to best minimize the
square error from the given W or H.[4] The EM
algorithm shows the fastest convergence to PCA
subspace. However, because of rotational ambiguity,
the column vectors of converged W are not actual
principle components, but linear combinations of
them. Maximum likelihood for probabilistic PCA
ensures only least square error . More operations,
which should not break fast monotonic convergence
to least square error, are needed. Fortunately, WH
is invariant under matrix transformation and inverse
transformation including orthogonalization, and one
can naturally apply the orthogonality to each
EM-step. It is not amazing that this orthogonality
removes calculations of matrix inversion and
simplify the update rule.

Noiseless probabilistic PCA algorithm has the

update rule with

(5)
(6)

(twTwHy''w'v
VHT(HHT )"

Hnew =
W new

fl

This iterative algorithm gives monotonic convergent
result of PCA subspace. Expectation step can be
transformed by an arbitrary matrix A which
orthogonalizes the given matrix W. So the E step
may be written as

W™= WA (7}

H™ = A w'w)'w'v

( Wnew TWnew J*] WnewTV

(8}
Obviously, matrix product WH 1is invariant under
the transformation A and Inverse transformation

A''. W is orthogonalized about column vectors, but
H is not vet about row vectors. However, keeping
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step with monotonic convergence to least square
error the H is gradually converged to an orthogonal
matrix. The matrix inversion {(W™)'wW™¥}! i
H™ update rule is diagonal matrix, and E step rule
may be rewritten as simpler form without
calculation of matrix inversion.

W "= F(W ) (9)

newr W new TV

H = — ¥
W nrew TW new 1H (10)
Similarly, in the M step,

H™ = F(H) (1

new T
- (12)

1W HnewH new T

where F is orthogonalizing function[9] and 1. is
ones matrix whose size is the same to matrix A.
The matrix division is changed from matrix
inversion to componentwise division.

Least square error formulation of NMF

There are two update rules for non-negative
matrix factorization(NMF). One is to minimize
generalized Kullback-Leibler divergence which is
related to parts based learning, the other is to
minimize square error function. The latter update
rule minimizes the square error monotonically like
EM algorithm with non-negativity. However the
non-negativity constraint is also free under
orthogonalization, The result is the same as above
algorithm.(Eq. 5712)

The multiplicative update rule for least square
error is

w'v

H™ = —
H® WIW B 13
new vwT
1172 =W eo——
© W HH (19

(© is elementwise product and matrix division is
elementwise division)

The convergent property of the rule is the same as
noiseless probabilistic PCA algorithm. It is a good
compromise  between speed and ease of
implementation for sguare error minimization.
However numerical division restricts the application
to positive matrix, The constraint is removed
through orthogonalization. Because of orthogonality
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of W and H, W'W and HH" are diagonal, so that
the update rules is reduced to Eq. 9712, Therefore
the same update rule is obtained.
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