유전자의 상위부분에 위치하면서 해당 유전자의 발현을 제어하는 신호부위 역할을 하는 프로모터 영역은 다양한 전사인자들이 결합하는 특정 신호부위들을 갖고 있다. 이러한 전사인자 결합부위들은 프로모터 영역 내의 매우 다양한 위치에 자리잡고 있으며, 진화론적으로 잘 보존된 Consensus 형태의 염기서열 패턴을 띠고 있다. 본 논문은 이러한 Consensus 패턴 탐색에 사용되는 Wataru 방법, EM 알고리즘, MEME 알고리즘, 유전자 알고리즘 및 Phylogenetic Footprinting 기법 등에 대해 소개하고, 향후 연구방향에 대한 전망을 제시하고자 한다.
A fuzzy approach using an EM algorithm for image classification is presented. In this study, a double compound stochastic image process is assumed to combine a discrete-valued field for region-class processes and a continuous random field for observed intensity processes. The Markov random field is employed to characterize the geophysical connectedness of a digital image structure. The fuzzy classification is an EM iterative approach based on mixture probability distribution. Under the assumption of the double compound process, given an initial class map, this approach iteratively computes the fuzzy membership vectors in the E-step and the estimates of class-related parameters in the M-step. In the experiments with remotely sensed data, the MRF-based method yielded a spatially smooth class-map with more distinctive configuration of the classes than the non-MRF approach.
주변 후방산란 통신 (Ambient Backsactter Communication, AmBC)은 주변의 RF 신호를 활용해 데이터를 전송하기 때문에 송신 전력이 제한되는 단점을 가지고 있다. 이를 위해, 송수신기 간 전송 효율을 높이 위한 방법으로 수신단에서 채널 상태를 추정할 수 있는 채널 추정기가 필요하다. 본 논문에서는 주변 후방산란 통신에서 기댓값-최대화 알고리즘(Expectation-Maximization Algorithm, EM algorithm) 기반의 채널 추정기의 성능 개선을 위해 K-means 알고리즘 도입 방안을 고려하였다. 모의실험은 제안한 채널 추정기의 성능 확인을 위해 성능 지표로 평균 제곱 오차 (Mean Square Error, MSE)를 사용한다. 모의실험을 통해 K-means을 통한 초깃값 설정 시, 기존 EM 알고리즘을 통한 채널 추정 방식 대비 개선된 성능을 보인다.
본 논문은 멀티레벨을 가지는 홀로그래픽 저장 장치에서 EM (Expectation-maximization) 알고리즘을 이용한 적응 문턱전압검출기를 제안한다. 멀티레벨을 이용한 홀로그래픽 저장 장치의 경우 DC 오프셋의 정도에 따라 비적응 문턱전압검출기의 성능에 매우 심각한 영향을 미친다. EM 방법은 채널을 통과한 데이터를 이용해 Expectation step과 maximization step을 반복하면서 평균과 분산을 추정하는 방법이다. DC 오프셋이 있는 상황에서 제안된 방법을 적용하여 문턱값을 찾아내서 검출한 결과 일정한 한도 내의 DC 오프셋의 경우는 DC 오프셋이 없는 경우와 동일한 성능을 보였다.
Journal of the Korean Data and Information Science Society
/
제17권3호
/
pp.785-794
/
2006
Suggested is an EM algorithm for estimation in mixture of shifted Poisson distributions with known shift parameters. For this type of mixture distribution, we have to utilize values of shift parameters to determine whether each of data belongs to some component distribution. We propose a method of estimating values of component information and then follow typical EM methodology. Simulation results show that the algorithm provides reasonable performance for the distribution.
ACK에서는 패턴 테이블 생성기와 핍홀 최적화기에서 스트링 패턴 매칭 기법을 이용하여 EM 중간 코드에 대한 최적화 코드를 생성한다. 하지만 이 스트링 패턴 매칭 방법은 패턴 결정 시에 반복적으로 많은 비교 동작이 이루어지므로 비효율적이다. 본 논문은 ACK의 중간 코드 최적화기를 개선하기 위해 EM 트리 생성기, 최적화 패턴 테이블 생성기, 트리 패턴 매칭기로 구성된 트리 패턴 매칭 알고리즘을 이용한 EM 중간 코드 최적화 시스템을 설계하고 구현하였다. 이러한 트리 패턴 매칭 알고리즘은 EM 트리를 하향식으로 순회하면서 트리 구조를 가진 패턴 테이블을 참조하여 루트 노드를 중심으로 패턴 매칭을 수행한다. 트리 패턴 매칭 동작은 궁극적으로 ACK의 스트링 패턴 매칭에 비해 최적화 패턴을 찾는데 걸리는 시간을 평균 10.8% 감소시킬 수 있는 효과를 보였다.
이 연구에서는 문헌 및 질의의 내용을 대표하는 주제어의 중의성 해소를 위해 대표적인 지도학습 모형인 나이브 베이즈 분류기와 비지도학습 모형인 EM 알고리즘을 각각 적용하여 검색 실험을 수행한 다음 주제어의 중의성 해소를 통해 검색 성능의 향상을 가져올 수 있는지를 평가하였다. 실험문헌 집단은 약 12만 건에 달하는 한국어 신문기사로 구성하였으며, 중의성 해소 대상 단어로는 한국어 동형이의어 9개를 선정하였다. 검색 실험에는 각 중의성 단어를 포함하는 18개의 질의를 사용하였다. 중의성 해소 실험 결과 나이브 베이즈 분류기는 최적의 조건에서 평균 $92\%$의 정확률을 보였으며, EM 알고리즘은 최적의 조건에서 평균 $67\%$ 수준의 클러스터링 성능을 보였다. 중의성 해소 알고리즘을 통합한 의미기반 검색에서는 나이브 베이즈 분류기 통합 검색이 약 $39.6\%$의 정확률을 보였고, EM 알고리즘 통합 검색이 약 $36\%$의 정확률을 보였다. 중의성 해소 모형을 적용하지 않은 베이스라인 검색의 정확률 $37\%$와 비교하면 나이브 베이즈 통합 검색은 약 $7.4\%$의 성능 향상률을 보인 반면 EM 알고리즘 통합 검색은 약 $3\%$의 성능 저하율을 보였다.
Missing observations are common in medical research and health survey research. Several statistical methods to handle the missing data problem have been proposed. The EM algorithm (Expectation-Maximization algorithm) is one of the ways of efficiently handling the missing data problem based on sufficient statistics. In this paper, we developed statistical models and methods for survey data with multivariate missing observations. Especially, we adopted the EM algorithm to handle the multivariate missing observations. We assume that the multivariate observations follow a multivariate normal distribution, where the mean vector and the covariance matrix are primarily of interest. We applied the proposed statistical method to analyze data from a health survey. The data set we used came from a physician survey on Resource-Based Relative Value Scale(RBRVS). In addition to the EM algorithm, we applied the complete case analysis, which uses only completely observed cases, and the available case analysis, which utilizes all available information. The residual and normal probability plots were evaluated to access the assumption of normality. We found that the residual sum of squares from the EM algorithm was smaller than those of the complete-case and the available-case analyses.
Many data sets obtained from surveys or medical trials often include missing observations. When these data sets are analyzed, it is general to use only complete cases. However, it is possible to have big biases or involve inefficiency. In this paper, we consider a method for estimating parameters in logistic linear models involving non-ignorable missing data mechanism. A binomial response and normal exploratory model for the missing data are used. We fit the model using the EM algorithm. The E-step is derived by Metropolis-hastings algorithm to generate a sample for missing data and Monte-carlo technique, and the M-step is by Newton-Raphson to maximize likelihood function. Asymptotic variances of the MLE's are derived and the standard error and estimates of parameters are compared.
Lachos, Victor H.;Bazan, Jorge L.;Castro, Luis M.;Park, Jiwon
Communications for Statistical Applications and Methods
/
제29권3호
/
pp.333-351
/
2022
The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the normal, skew-normal and Student's-t distributions as special cases. In this work, we propose an EM-type algorithm for computing the maximum likelihood estimates for skew-t linear regression models with censored response. In contrast with previous proposals, this algorithm uses analytical expressions at the E-step, as opposed to Monte Carlo simulations. These expressions rely on formulas for the mean and variance of a truncated skew-t distribution, and can be computed using the R library MomTrunc. The standard errors, the prediction of unobserved values of the response and the log-likelihood function are obtained as a by-product. The proposed methodology is illustrated through the analyses of simulated and a real data application on Letter-Name Fluency test in Peruvian students.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.