• 제목/요약/키워드: EM Algorithm

검색결과 377건 처리시간 0.023초

프로모터 영역의 전사인자 결합부위 Consensus 패턴 탐색 방법 (Search Method for Consensus Pattern of Transcription Factor Binding Sites in Promoter Region)

  • 김기봉
    • 한국산학기술학회논문지
    • /
    • 제9권5호
    • /
    • pp.1218-1224
    • /
    • 2008
  • 유전자의 상위부분에 위치하면서 해당 유전자의 발현을 제어하는 신호부위 역할을 하는 프로모터 영역은 다양한 전사인자들이 결합하는 특정 신호부위들을 갖고 있다. 이러한 전사인자 결합부위들은 프로모터 영역 내의 매우 다양한 위치에 자리잡고 있으며, 진화론적으로 잘 보존된 Consensus 형태의 염기서열 패턴을 띠고 있다. 본 논문은 이러한 Consensus 패턴 탐색에 사용되는 Wataru 방법, EM 알고리즘, MEME 알고리즘, 유전자 알고리즘 및 Phylogenetic Footprinting 기법 등에 대해 소개하고, 향후 연구방향에 대한 전망을 제시하고자 한다.

MRF-based Fuzzy Classification Using EM Algorithm

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제21권5호
    • /
    • pp.417-423
    • /
    • 2005
  • A fuzzy approach using an EM algorithm for image classification is presented. In this study, a double compound stochastic image process is assumed to combine a discrete-valued field for region-class processes and a continuous random field for observed intensity processes. The Markov random field is employed to characterize the geophysical connectedness of a digital image structure. The fuzzy classification is an EM iterative approach based on mixture probability distribution. Under the assumption of the double compound process, given an initial class map, this approach iteratively computes the fuzzy membership vectors in the E-step and the estimates of class-related parameters in the M-step. In the experiments with remotely sensed data, the MRF-based method yielded a spatially smooth class-map with more distinctive configuration of the classes than the non-MRF approach.

후방산란 통신시스템에서 군집화를 통한 블라인드 채널 추정 (Blind Channel Estimation through Clustering in Backscatter Communication Systems)

  • 김수현;이동구;선영규;심이삭;황유민;신요안;김동인;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.81-86
    • /
    • 2020
  • 주변 후방산란 통신 (Ambient Backsactter Communication, AmBC)은 주변의 RF 신호를 활용해 데이터를 전송하기 때문에 송신 전력이 제한되는 단점을 가지고 있다. 이를 위해, 송수신기 간 전송 효율을 높이 위한 방법으로 수신단에서 채널 상태를 추정할 수 있는 채널 추정기가 필요하다. 본 논문에서는 주변 후방산란 통신에서 기댓값-최대화 알고리즘(Expectation-Maximization Algorithm, EM algorithm) 기반의 채널 추정기의 성능 개선을 위해 K-means 알고리즘 도입 방안을 고려하였다. 모의실험은 제안한 채널 추정기의 성능 확인을 위해 성능 지표로 평균 제곱 오차 (Mean Square Error, MSE)를 사용한다. 모의실험을 통해 K-means을 통한 초깃값 설정 시, 기존 EM 알고리즘을 통한 채널 추정 방식 대비 개선된 성능을 보인다.

멀티레벨 홀로그래픽 저장장치를 위한 적응 EM 알고리즘 (Adaptive Threshold Detection Using Expectation-Maximization Algorithm for Multi-Level Holographic Data Storage)

  • 김진영;이재진
    • 한국통신학회논문지
    • /
    • 제37A권10호
    • /
    • pp.809-814
    • /
    • 2012
  • 본 논문은 멀티레벨을 가지는 홀로그래픽 저장 장치에서 EM (Expectation-maximization) 알고리즘을 이용한 적응 문턱전압검출기를 제안한다. 멀티레벨을 이용한 홀로그래픽 저장 장치의 경우 DC 오프셋의 정도에 따라 비적응 문턱전압검출기의 성능에 매우 심각한 영향을 미친다. EM 방법은 채널을 통과한 데이터를 이용해 Expectation step과 maximization step을 반복하면서 평균과 분산을 추정하는 방법이다. DC 오프셋이 있는 상황에서 제안된 방법을 적용하여 문턱값을 찾아내서 검출한 결과 일정한 한도 내의 DC 오프셋의 경우는 DC 오프셋이 없는 경우와 동일한 성능을 보였다.

Estimation in Mixture of Shifted Poisson Distributions with Known Shift Parameters

  • Lee, Hyun-Jung;Oh, Chang-Hyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.785-794
    • /
    • 2006
  • Suggested is an EM algorithm for estimation in mixture of shifted Poisson distributions with known shift parameters. For this type of mixture distribution, we have to utilize values of shift parameters to determine whether each of data belongs to some component distribution. We propose a method of estimating values of component information and then follow typical EM methodology. Simulation results show that the algorithm provides reasonable performance for the distribution.

  • PDF

트리패턴매칭기법의 재목적 가능한 중간코드 최적화 시스템 (Retargetable Intermediate Code Optimization System Using Tree Pattern Matching Techniques)

  • 김정숙;오세만
    • 한국정보처리학회논문지
    • /
    • 제6권8호
    • /
    • pp.2253-2261
    • /
    • 1999
  • ACK에서는 패턴 테이블 생성기와 핍홀 최적화기에서 스트링 패턴 매칭 기법을 이용하여 EM 중간 코드에 대한 최적화 코드를 생성한다. 하지만 이 스트링 패턴 매칭 방법은 패턴 결정 시에 반복적으로 많은 비교 동작이 이루어지므로 비효율적이다. 본 논문은 ACK의 중간 코드 최적화기를 개선하기 위해 EM 트리 생성기, 최적화 패턴 테이블 생성기, 트리 패턴 매칭기로 구성된 트리 패턴 매칭 알고리즘을 이용한 EM 중간 코드 최적화 시스템을 설계하고 구현하였다. 이러한 트리 패턴 매칭 알고리즘은 EM 트리를 하향식으로 순회하면서 트리 구조를 가진 패턴 테이블을 참조하여 루트 노드를 중심으로 패턴 매칭을 수행한다. 트리 패턴 매칭 동작은 궁극적으로 ACK의 스트링 패턴 매칭에 비해 최적화 패턴을 찾는데 걸리는 시간을 평균 10.8% 감소시킬 수 있는 효과를 보였다.

  • PDF

정보검색 성능 향상을 위한 단어 중의성 해소 모형에 관한 연구 (Improving the Retrieval Effectiveness by Incorporating Word Sense Disambiguation Process)

  • 정영미;이용구
    • 정보관리학회지
    • /
    • 제22권2호
    • /
    • pp.125-145
    • /
    • 2005
  • 이 연구에서는 문헌 및 질의의 내용을 대표하는 주제어의 중의성 해소를 위해 대표적인 지도학습 모형인 나이브 베이즈 분류기와 비지도학습 모형인 EM 알고리즘을 각각 적용하여 검색 실험을 수행한 다음 주제어의 중의성 해소를 통해 검색 성능의 향상을 가져올 수 있는지를 평가하였다. 실험문헌 집단은 약 12만 건에 달하는 한국어 신문기사로 구성하였으며, 중의성 해소 대상 단어로는 한국어 동형이의어 9개를 선정하였다. 검색 실험에는 각 중의성 단어를 포함하는 18개의 질의를 사용하였다. 중의성 해소 실험 결과 나이브 베이즈 분류기는 최적의 조건에서 평균 $92\%$의 정확률을 보였으며, EM 알고리즘은 최적의 조건에서 평균 $67\%$ 수준의 클러스터링 성능을 보였다. 중의성 해소 알고리즘을 통합한 의미기반 검색에서는 나이브 베이즈 분류기 통합 검색이 약 $39.6\%$의 정확률을 보였고, EM 알고리즘 통합 검색이 약 $36\%$의 정확률을 보였다. 중의성 해소 모형을 적용하지 않은 베이스라인 검색의 정확률 $37\%$와 비교하면 나이브 베이즈 통합 검색은 약 $7.4\%$의 성능 향상률을 보인 반면 EM 알고리즘 통합 검색은 약 $3\%$의 성능 저하율을 보였다.

보건조사연구에서 다변량결측치가 내포된 자료를 효율적으로 분석하기 위한 통계학적 방법 (Statistical Methods for Multivariate Missing Data in Health Survey Research)

  • 김동기;박은철;손명세;김한중;박형욱;안재형;임종건;송기준
    • Journal of Preventive Medicine and Public Health
    • /
    • 제31권4호
    • /
    • pp.875-884
    • /
    • 1998
  • Missing observations are common in medical research and health survey research. Several statistical methods to handle the missing data problem have been proposed. The EM algorithm (Expectation-Maximization algorithm) is one of the ways of efficiently handling the missing data problem based on sufficient statistics. In this paper, we developed statistical models and methods for survey data with multivariate missing observations. Especially, we adopted the EM algorithm to handle the multivariate missing observations. We assume that the multivariate observations follow a multivariate normal distribution, where the mean vector and the covariance matrix are primarily of interest. We applied the proposed statistical method to analyze data from a health survey. The data set we used came from a physician survey on Resource-Based Relative Value Scale(RBRVS). In addition to the EM algorithm, we applied the complete case analysis, which uses only completely observed cases, and the available case analysis, which utilizes all available information. The residual and normal probability plots were evaluated to access the assumption of normality. We found that the residual sum of squares from the EM algorithm was smaller than those of the complete-case and the available-case analyses.

  • PDF

On statistical Computing via EM Algorithm in Logistic Linear Models Involving Non-ignorable Missing data

  • Jun, Yu-Na;Qian, Guoqi;Park, Jeong-Soo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.181-186
    • /
    • 2005
  • Many data sets obtained from surveys or medical trials often include missing observations. When these data sets are analyzed, it is general to use only complete cases. However, it is possible to have big biases or involve inefficiency. In this paper, we consider a method for estimating parameters in logistic linear models involving non-ignorable missing data mechanism. A binomial response and normal exploratory model for the missing data are used. We fit the model using the EM algorithm. The E-step is derived by Metropolis-hastings algorithm to generate a sample for missing data and Monte-carlo technique, and the M-step is by Newton-Raphson to maximize likelihood function. Asymptotic variances of the MLE's are derived and the standard error and estimates of parameters are compared.

  • PDF

The skew-t censored regression model: parameter estimation via an EM-type algorithm

  • Lachos, Victor H.;Bazan, Jorge L.;Castro, Luis M.;Park, Jiwon
    • Communications for Statistical Applications and Methods
    • /
    • 제29권3호
    • /
    • pp.333-351
    • /
    • 2022
  • The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the normal, skew-normal and Student's-t distributions as special cases. In this work, we propose an EM-type algorithm for computing the maximum likelihood estimates for skew-t linear regression models with censored response. In contrast with previous proposals, this algorithm uses analytical expressions at the E-step, as opposed to Monte Carlo simulations. These expressions rely on formulas for the mean and variance of a truncated skew-t distribution, and can be computed using the R library MomTrunc. The standard errors, the prediction of unobserved values of the response and the log-likelihood function are obtained as a by-product. The proposed methodology is illustrated through the analyses of simulated and a real data application on Letter-Name Fluency test in Peruvian students.