DOI QR코드

DOI QR Code

MRF-based Fuzzy Classification Using EM Algorithm

  • Published : 2005.10.01

Abstract

A fuzzy approach using an EM algorithm for image classification is presented. In this study, a double compound stochastic image process is assumed to combine a discrete-valued field for region-class processes and a continuous random field for observed intensity processes. The Markov random field is employed to characterize the geophysical connectedness of a digital image structure. The fuzzy classification is an EM iterative approach based on mixture probability distribution. Under the assumption of the double compound process, given an initial class map, this approach iteratively computes the fuzzy membership vectors in the E-step and the estimates of class-related parameters in the M-step. In the experiments with remotely sensed data, the MRF-based method yielded a spatially smooth class-map with more distinctive configuration of the classes than the non-MRF approach.

Keywords

References

  1. Andrey, P. and P. Tarroux, 1998. Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation, IEEE Trans. Pattern Anal. Machine Intell., 20: 252-262 https://doi.org/10.1109/34.667883
  2. Bouman, C. and B. Liu, 1991. Multiple resolution segmentation of textured images, IEEE Trans. PattemAnal. Machine Intell., 13: 99-113 https://doi.org/10.1109/34.67641
  3. Hazel, G. G., 2000. Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection, IEEE Trans. Geosci. Remote Sensing, 38: 1199-121l https://doi.org/10.1109/36.843012
  4. Georgii, H. O., 1979. Canonical Gibbs Measure, Springer-Verlag, Berlin
  5. Kervrann, C. and F. Heitz, 1995. A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics, IEEE Trans. Image Processing, 4: 856-862 https://doi.org/10.1109/83.388090
  6. Kindermann, R. and J. L. Snell, 1982. Markov Random Fields and Their Application, Amer. Math. Soc., Providence, R. I
  7. Lee, S., 2004. Fuzzy training based on segmentation using spatial region growing, Korean J. Remote Sensing, 20: 353-359 https://doi.org/10.7780/kjrs.2004.20.5.353
  8. Lee S. and M. M. Crawford, 2005. Unsupervised multistage image classification using hierarchical clustering with a bayesian similarity measure, IEEE Trans. Image Processing, 14: 312- 320 https://doi.org/10.1109/TIP.2004.841195
  9. Liang, Z, R. J. Jaszczak, and R. E. Coleman, 1992. Parameter Estimation of Finite Mixture Using the EM Algorithm and Information Criteria with Application to Medical Image Processing, IEEE Trans. Nucl. Sci., 39: 1126-1133 https://doi.org/10.1109/23.159772
  10. Manjunath, B. S. and R. Chellappa, 1991. Unsupervised texture segmentation using Markov random fields, IEEE Trans. Pattern Anal. Machine Intell., 13: 478-482 https://doi.org/10.1109/34.134046
  11. Mignotte, M., C. Coller, P. Perez, and P. Bouthemy, 2000. Sonar image segmentation using an unsupervised hierarchical MRF model, IEEE Trans. Image Processing, 9: 1216-1231 https://doi.org/10.1109/83.847834
  12. Nguyen, H. H. and P. Cohen, 1993. Gibbs random fields, fuzzy clustering, and the unsupervised segmentation of textured images, CVGIP: Graphical Models Image Processing, 55: 1-9 https://doi.org/10.1006/gmip.1993.1001
  13. Panjwani, D. K. and G. Healey, 1995. Markov random field models for unsupervised segmentation of textured color images, IEEE Trans. Pattern Anal. Machine Intell., 17: 939-954 https://doi.org/10.1109/34.464559
  14. Sarkar, A., M. K. Biswas, and K. M. S. Sharma, 2000. A simple unsupervised MRF model based image segmentaion approach, IEEE Trans. Image Processing, 9: 801-812 https://doi.org/10.1109/83.841527
  15. Sarkar, A., M. K. Biswas, B. Kartikeyan, V. Kumar, K. L. Majumder, and D. K. Pal, 2002. A MRF model-based segmentation approach to classification for multispectral imagery, IEEE Trans.Geosci. Remote Sensing, 40:1102-1113 https://doi.org/10.1109/TGRS.2002.1010897
  16. Sziranyi, T., J. Zerubia, L. Czuni, D. Geldreich, and Z. Kato, 2000. Image segmentation using Markov random field model in fully parallel cellular network architectures, Real- Time Imaging, 6: 195-211 https://doi.org/10.1006/rtim.1998.0159
  17. Won, C. S. and H. Derin, 1992. Unsupervised segmentation of noisy and textured images using Markov random fields, Comp. Vision, Graphics, Image Processing, 54: 308-328
  18. Yamazaki, T. and D. Gingras, 1999. Unsupervised multispectral image classification using MRF models and VQ method, IEEE Trans.Geosci. Remote Sensing, 37: 1173-1176 https://doi.org/10.1109/36.752237