• Title/Summary/Keyword: EM (Electromagnetic) Simulation

Search Result 132, Processing Time 0.023 seconds

Broadband metamaterial absorber using resistive layers

  • Kim, Y.J.;Yoo, Y.J.;Hwang, J.S.;Son, H.M.;Rhee, J.Y.;Kim, K.W.;Lee, Y. P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.359.1-359.1
    • /
    • 2016
  • The electromagnetic (EM) properties of media, such as propagation, focusing and scattering, strongly rely on the electric permittivity and the magnetic permeability of media. Recently, artificially-created metamaterials (MMs) composed of periodically-arranged unit cells with tailored electric permittivity and magnetic permeability have drawn wide interest due to their capability of adjusting the EM response. MM absorbers using the conventional sandwich structures usually have very high absorption at a certain frequency, and the absorption properties of MMs can be adjusted simply by changing the geometrical parameters of unit cell. In this work, we suggested an incident-angle-independent broadband perfect absorber based on resistive layers. We analyze the absorption mechanism based on the impedance matching with the free space and the distribution of surface currents at specific frequencies. From the simulation, the absorption was expected to be higher than 96% in 1.4-6.0 GHz. The corresponding experimental absorption was found to be higher than 96% in 1.4-4.0 GHz, and the absorption turned out to be slightly lower than 96% in 4.0-6.0 GHz owing to the irregularity in the thickness of resistive layers.

  • PDF

Sheetlike Waveguide for 2.4 GHz and 5 GHz Bands

  • Eom, Kun-Sun;Hiroyuki, Arai
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.112-119
    • /
    • 2010
  • We present a useful design for a free access mat which supports two frequency bands of 2.4 GHz and 5 GHz. The free access mat is a sheet-shaped waveguide which consists of a tightly coupled double-layered microstrip resonator array. It provides easy access for devices in short-range wireless communications. Interference is a common problem with conventional applications which use free space transmission. Our proposed wireless access system uses a subsidiary waveguide, the free access mat. Wireless devices are proximately coupled to the free access mat through which the coupled electromagnetic (EM) wave transmits. The arrival domain of the EM wave of an application is therefore limited to an area close to the free access mat. Wireless devices can be coupled to the free access mat at an arbitrary position without contact. We previously presented a free access mat for a single frequency band. This paper presents a free access mat for the two frequency bands of 2.4 GHz and 5 GHz. The free access mat uses a ring patch resonator array which is easily excited by typical antennas and is resistant to interference. These characteristics are demonstrated by numerical simulation and confirmed by experiment.

A 2.65 GHz Doherty Power Amplifier Using Internally-Matched GaN-HEMT (내부정합된 GaN-HEMT를 이용한 2.65 GHz Doherty 전력증폭기)

  • Kang, Hyunuk;Lee, Hwiseob;Lim, Wonseob;Kim, Minseok;Lee, Hyoungjun;Yoon, Jeongsang;Lee, Dongwoo;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.269-276
    • /
    • 2016
  • This paper presents a 2.65 GHz Doherty power amplifier with internally-matched GaN HEMT. Internal matching circuits were adopted to match its harmonic impedances inside the package. Simultaneously, due to the partially matched fundamental impedance, input and output matching networks become simpler. Bond wires and parasitic elements of transistor package were predicted by EM simulation. For the LTE signal with 6.5 dB PAPR, the implemented Doherty power amplifier shows a power gain of 13.0 dB, a saturated output power of 55.4 dBm, an efficiency of 49.1 %, and ACLR of -26.3 dBc at 2.65 GHz with an operating voltage of 48 V.

Design of Ka-band Feed Horn and Cassegrain Antenna (Ka-band 대역의 급전 혼과 카셋그레인 안테나 개발)

  • Ahn, Seung-Beom;Choo, Ho-Sung;Kang, Jin-Seob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.943-953
    • /
    • 2007
  • In this paper, we propose a Cassegrain antenna with a scalar feed horn opt rating in Ka-band. For an effective EM simulation of the Cassegrain antenna, the near-field of the feed hone is used ai the equivalent source of the Cassegrain antenna using the surface equivalent theorem. A corrugated circular horn operating with $HE_{11}$ mode is used as the feed horn. The angle and feed center of the main and sub reflectors are optimized to achieve maximum antenna efficiency. The designed feed horn shows the gain of 19dBi, the side-lobe level of less than -25dB and the half power beam width of $20^{\circ}$ at 33 GHz. The Cassegrain antenna shows the gain of 41dBi, the efficiency of 60%, the side-lobe level of less than -20dB and the half power beam width of $1.2^{\circ}$.

Paper-Based Pattern Switchable Antenna Using Inkjet-Printing Technology (잉크젯 프린팅 기술을 이용한 종이 기반의 방사패턴 가변 안테나)

  • Eom, Seung Hyun;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.613-619
    • /
    • 2015
  • In this paper, we proposed a paper-based pattern-switchable antenna using inkjet-printing technology. The proposed antenna is composed of two bow-tie antennas and a switching network. The bow-tie antennas are inkjet-printed on paper using a low cost home printer. The switching network is built on a printed-circuit-board(PCB) and consists of a single-pole-double-throw(SPDT) switch and balun element. A double-sided parallel-strip line(DSPSL) can convert the unbalanced microstrip mode to the balanced strip mode. Two bow-tie antennas have different radiation patterns because of the different orientation of the reflectors. It is demonstrated from EM simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT.

Design of Two-Stage X-Band Power Amplifier Using GaN-HEMT (GaN-HEMT를 이용한 X-대역 이단 전력증폭기 설계)

  • Lee, Wooseok;Lee, Hwiseob;Park, Seungkuk;Lim, Wonseob;Han, Jaekyoung;Park, Kwanggun;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • This paper presents an X-band two-stage power amplifier using GaN-HEMT. Two-stage structure was adopted to take its high gain and simple inter-stage matching network. Based on a 3D EM simulation, the bond-wire inductance and the parasitic capacitance were predicted. By reducing bond-wire inductance, Q of the matching network is decreased and the bandwidth is improved. The implemented two-stage PA shows a power gain of more than 16 dB, saturated output power of more than 42.5 dBm, and a efficiency of more than 35 % in frequency range of 8.1~8.5 GHz with an operating voltage of 40 V.

Design of Ku-Band BiCMOS Low Noise Amplifier (Ku-대역 BiCMOS 저잡음 증폭기 설계)

  • Chang, Dong-Pil;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.199-207
    • /
    • 2011
  • A Ku-band low noise amplifier has been designed and fabricated by using 0.25 um SiGe BiCMOS process. The developed Ku-band LNA RFIC which has been designed with hetero-junction bipolar transistor(HBT) in the BiCMOS process have noise figure about 2.0 dB and linear gain over 19 dB in the frequency range from 9 GHz to 14 GHz. Optimization technique for p-tap value and electro-magnetic(EM) simulation technique had been used to overcome the inaccuracy in the PDK provided from the foundry service company and to supply the insufficient inductor library. The finally fabricated low noise amplifier of two fabrication runs has been implemented with the size of $0.65\;mm{\times}0.55\;mm$. The pure amplifier circuit layout with the reduced size of $0.4\;mm{\times}0.4\;mm$ without the input and output RF pads and DC bais pads has been incorporated as low noise amplication stages in the multi-function RFIC for the active phased array antenna of Ku-band satellite VSAT.

A Study on the Improvement of Efficiency and Linearity of Power Amplifier using PBG Structure (PBG 구조를 이용한 전력 증폭기의 효율 및 선형성 개선에 관한 연구)

  • 김병희;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1182-1190
    • /
    • 2001
  • In this paper, microstrip photonic bandgap (PBG) structure with special perforation patterns etched on the line itself is analyzed and optimized in shape, then used for harmonic tuning of power amplifier. This PBG has an advantage in being fabricated and grounded. The dimension of unit lattice is enlarged vertically, but its input and output line maintain 50 Ω using tapered line. This modification from original structure can lessen possible error in etching PCB. The analysis and design of PBG structure are acquired from using EM simulation. The measured insertion loss of the final structure is 0.3 ∼0.4 dB, and its bandwidth of stopband is 6∼7 GHz. Measured results of improved characteristics by using PBG structure at the output of the power amplifier are 0.72∼0.99 dB in output power, 1.14∼7.8 % in PAE, and 1 dBc in the third IMD.

  • PDF

MMIC Low Noise Amplifier Design for Millimeter-wave Application (밀리미터파 응용을 위한 MMIC 저잡음 증폭기 설계)

  • 장병준;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1191-1198
    • /
    • 2001
  • MMIC low noise amplifiers for millimeter-wave application using 0.15 $\mu$m pHEMT have been presented in this paper. The design emphasis is on active device model and EM simulation. The deficiency of conventional device models is identified. A distributed device model has been adapted to circumvent the scaling problems and, thus, to predict small signal and noise parameters accurately. Two single-ended low noise amplifier are designed using distributed active device model for Q-band(40 ∼ 44 GHz) and V-band(58 ∼65 GHz) application. The Q-band amplifier achieved a average noise figure of 2.2 dB with 18.3 dB average gain. The V-band amplifier achieved a average noise figure of 2.9 dB with 14.7 dB average gain. The design technique and model employed provides good agreement between measured and predicted results. Compared with the published data, this work also represents state-of-the-art performance in terms of gain and noise figure.

  • PDF

A Study on EM Wave Absorber for Electromagnetic Wave Environment of Wireless LAN at 5.2 GHz (5.2 GHz 무선 LAN의 전자파 환경 대책용 전파흡수체에 관한 연구)

  • Yoo, Gun-Suk;Choi, Dong-Soo;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • Recently, the wireless LAN system is rapidly growing because of its convenience of high speed communication. However, the wireless LAN systems at indoor places occur multi-propagation path by reflected waves from walls, ceilings, floors, and desks. Multipath problems cause transmission errors and degradation of communication speed. These problems can be solved by using EM wave absorbers. In this paper, we analyzed property of Graphite and derived the optimum ratio of Graphite: CPE to develop EM wave absorber for the wireless LAN system. First, we fabricated several samples in different composition ratios of Graphite and CPE, and then measured the reflection coefficient of each samples. Material constants of permittivity and permeability were calculated using the measured data and designed EM wave absorber. Secondly, the EM wave absorber was fabricated and tested on the base of the simulation data. As a result, it showed that the EM wave absorber in 1.7 mm thickness with the ratio of Graphite: CPE=50:50 wt.% has excellent absorption ability more than 27 dB at 5.2 GHz.