A Study on the Improvement of Efficiency and Linearity of Power Amplifier using PBG Structure

PBG 구조를 이용한 전력 증폭기의 효율 및 선형성 개선에 관한 연구

  • 김병희 (성균관대학교 전기전자 및 컴퓨터공학부) ;
  • 박천석 (성균관대학교 전기전자 및 컴퓨터공학부)
  • Published : 2001.12.01

Abstract

In this paper, microstrip photonic bandgap (PBG) structure with special perforation patterns etched on the line itself is analyzed and optimized in shape, then used for harmonic tuning of power amplifier. This PBG has an advantage in being fabricated and grounded. The dimension of unit lattice is enlarged vertically, but its input and output line maintain 50 Ω using tapered line. This modification from original structure can lessen possible error in etching PCB. The analysis and design of PBG structure are acquired from using EM simulation. The measured insertion loss of the final structure is 0.3 ∼0.4 dB, and its bandwidth of stopband is 6∼7 GHz. Measured results of improved characteristics by using PBG structure at the output of the power amplifier are 0.72∼0.99 dB in output power, 1.14∼7.8 % in PAE, and 1 dBc in the third IMD.

본 논문에서는 마이크로스트립 선로상의 금속부분을 일부 제거한 형태의 Photonic bandgap (PBG) 구조의 특성을 분석하고 형태를 최적화 한 후 전력 증폭기에 적용하여 고조파 동조를 수행하였다. 이 구조는 제작 및 접지에서 타 구조에 비해 유리하다. PCB 제작 과정의 오차를 줄이기 위해 단위 격자의 크기를 수직방향으로 증가시키고, 테이퍼 선로를 이용하여 입출력을 50 $\Omega$으로 유지시켰다. EM 시뮬레이션으로 PBG 구조의 특성을 분석하고 설계하였으며, 최종적으로 통과대역 손실 0.3~0.4dB, 저지대역폭 6~7GHz의 특성을 얻었다. 전력 증폭기에 PBG구조를 적용한 후 출력 전력은 0.72~0.99dB, PAE는 1.14~7.8 %, 3차 IMD는 1 dBc 증가하는 결과를 얻을 수 있었다.

Keywords

References

  1. APMC'1997 Simulation and experiment of photonic band-gap structure for microstrip circuits Y. Qian;V. Radisic;T. Itoh
  2. IEEE Microwave Guided Wave Lett. v.8 no.2 Novel 2-D photonic bandgap structure for microstrip lines V. Radisic;Y. Qian;R. Coccioli;T. Itoh
  3. IEEE Microwave Guided Wave Lett. v.10 no.10 Novel 1-D microstrip PBG cells Q. Xue;K. M. Shun;C. H. Chan
  4. IEEE Trans. on Microwave Theory and Tech. v.47 no.8 A uniplanar compact photonic-bandgap(UC-PBG) structure and its applications for microwave circuits F. R. Yang;K. P. Ma;Y. Qian;T. Itoh
  5. IEEE Trans. on Microwave Theory and Tech. v.47 no.11 Aperture-coupled patch antenna on UC-PBG substrate R. Coccioli;F. R. Yang;K. P. Ma;T. Itoh
  6. IEEE MTT-S Int. Microwave Symp. Dig. v.3 High efficiency S-band class AB push-pull power amplifier with wide band harmonic suppression C. Y. Hang;Y. Qian;T. Itoh
  7. IEEE MTT-S Int. Microwave Symp. Dig. v.2 High efficiency power amplifier with novel PBG ground plane for harmonic tuning C. Y. Hang;V. Radisic;Y. Qian;T. Itoh
  8. IEEE MTT-S Int. Microwave Symp. Dig. v.3 Broadband power amplifier integrated with slot antenna and novel harmonic tuning structure V. Radisic;Y. Qian;T. Itoh
  9. IEEE Trans. on Microwave Theory and Tech. v.46 no.11 Novel architectures for high-efficiency amplifiers for wireless applications V. Radisic;Y. Qian;T. Itoh
  10. IEEE MTT-S Int. Topical Symp. Technol. Wireless Applicat. The effect of harmonic load terminations on RF power amplifier linearity for sinusoidal and π/4 DQPSK stimuli J. Staudinger;G. Norris
  11. IEEE Microwave Guided Wave Lett. v.8 no.10 Photonic bandgap structures used as filters in microstrip circuits I. Rumsey;M. Piket-May;P. K. Kelly
  12. IEEE Microwave Guided Wave Lett. v.10 no.1 A novel photonic bandgap structure for low-pass filter of wide stopband T. Kim;C. Seo
  13. EUMC'1999 v.2 Novel wideband photonic bandgap microstrip structures M. J. Erro;T. Lopetegi;M. A. G. Laso;D. Benito;M. J. Garde;F. Falcone;M. Sorolla
  14. IEEE Microwave Wireless Components Lett. v.11 no.4 A power amplifier with efficiency improved using defected ground structure J. S. Lim;H. S. Kim;J. S. Park;D. Ahn;S. W. Nam