• Title/Summary/Keyword: EM (Electromagnetic) Simulation

Search Result 132, Processing Time 0.029 seconds

A Study on Development of the EM Wave Absorber for ETC System

  • Park, Soo-Hoon;Kim, Dong-Il;Song, Young-Man;Yoon, Sang-Gil
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.70-75
    • /
    • 2008
  • In this paper, the EM wave absorber was designed and fabricated for countermeasure against EMI from a ceiling of a tollgate in ETC system. We fabricated several samples in different composition ratios of MnZn-ferrite, Carbon, and CPE(Chlorinated Polyethylene). Absorption abilities were simulated in accordance with different thicknesses of the prepared absorbers and changed complex relative permittivity and permeability according to composition ratio. The optimized mixing ratio of MnZn-ferrite, Carbon, and CPE was found as 40:15:45 wt.% by experiments and simulation. Then the EM wave absorber was fabricated and tested using the simulated data. As a result, the developed EM wave absorber has the thickness of 3.3 mm and absorption ability was more than 20 dB in the case of normal incidence and more than 11 dB for the incident angle from 15 to 45 degrees at 5.8 GHz. Therefore, it was confirmed that the newly developed absorber can be used for ETC system.

Placement Optimization of Airborne Line-Of-Sight Datalink Directional Antenna in UAV (무인항공기 탑재 가시선 데이터링크 방향성 안테나 위치 최적화)

  • Kim, Jihoon;Choi, Jaewon;Chung, Eulho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.18-24
    • /
    • 2014
  • In this paper, the optimum placement of airborne line-of-sight (LOS) datalink directional antenna to minimize the datalink loss within the operation range of unmanned aerial vehicle (UAV) is analyzed by using the electromagnetic (EM) simulation. In quick banking of UAV, the datalink loss is occurred due to the electromagnetic distortion and transmission loss by the fuselage blockage. In general, the banking angle of UAV is limited to prevent the datalink loss. However, in this case, there is the problem that the mission performance ability is largely limited by the banking radius increase. To solve this problem, the optimum placement to mount the airborne LOS datalink 1-axis directional antenna on both the top and bottom surfaces of fuselage is analyzed by using EM simulation. The 1-axis antenna with large vertical beamwidth is used because the banking angle of UAV is dependent on the vertical beamwidth of antenna. Also, there is the benefit to reduce largely the weight because the 1-axis antenna can be mounted instead of the 2-axis one.

Design and Manufacture of X-Band 10 X 10 Waveguide Slot Array Antenna for SAR (SAR용 X-밴드 10 10도파관 슬롯 배열 안테나 설계 및 제작)

  • 신영종;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1019-1025
    • /
    • 2004
  • The X-band 10${\times}$10 waveguide slot array antenna for SAR is designed, fabricated and measured. The array antenna is designed using the equivalent circuit model based on the field distribution of the dominant mode, TE$\sub$10/, and EM simulation. The method to decide optimum angle of the centered inclined slot(coupling slot) and the optimum of offset of the longitudinal slot(radiating slot) is provided. The designed antenna structure is EM simulated and fabricated. The measured return loss bandwidth is 180 MHz at 9.15 GHz , the side lobe level is below -25 dB, HPBW is about 9$^{\circ}$, and the gain is 25.5 dB. These results are similar to the simulation data.

EM Analysis of High Voltage Connector for Hybrid/Electric Vehicle (하이브리드/전기 자동차용 고전압 커넥터의 전자기 해석)

  • Lee, June-Sang;Kim, Jong-Min;Nam, Ki-Hoon;Bae, Hyeon-Ju;Sung, Jin-Tae;Nah, Wan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.131-137
    • /
    • 2011
  • This paper analyzes EM(Electromagnetic) characteristic in the high voltage connector for the hybrid electric vehicle. The connector bridges the electrical components and helps transferring electrical power and signal through it. The necessity of the high voltage and current connector development is emphasized because the hybrid electric vehicle recently uses the high voltage and current more than 500V and 80A. So far there has not been international EMC (Electromagnetic Compatibility) standards to limit the RE(Radiation Emission) from the connector for the hybrid electric vehicle. In this paper we analyzed EM characteristic of the 288V, 65A connector to check if the RE from the high voltage connector could be within the RE limit standard of vehicle. Three-dimensional modeling and simulation was conducted by using MWS(Microwave Studio) of the CST corporation, and the result was compared with the measured RE data, which showed good coincidence each other.

Wide-Band 6~10 GHz InGaAs 0.15μm pHEMT 27 dBm Power Amplifier (광대역 응용을 위한 6~10 GHz InGaAs 0.15μm pHEMT 27 dBm급 전력증폭기)

  • Ahn, Hyun-Jun;Sim, Sang-Hoon;Park, Myung-Cheol;Kim, Seung-Min;Park, Bok-Ju;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.766-772
    • /
    • 2018
  • A 6~10 GHz wide-band power amplifier was designed using an InGaAs enhancement-mode(E-mode) $0.15{\mu}m$ pseudomorphic high-electron-mobility transistor(pHEMT). The positive gate bias of the E-mode pHEMT device removes the need for complex negative voltage generation circuits, therefore reducing the module size. The wire bond and substrate loss parameters were modeled and extracted using a three-dimensional electromagnetic(3D EM) simulation. For wideband characteristics, lossy matching was adopted and the gate bias was optimized for maximum power and efficiency. The measured gain, in/output return loss, output power, and power-added efficiency were greater than 20 dB, 8 dB, 27 dBm, and 35 %, respectively, in the 6~10 GHz band.

COMPARISON OF ESTIMATED RADIATED POWER OF ANTENNA USING ELECTRICAL CIRCUIT AND FULL WAVE ELECTROMAGNETIC SIMULATION (등가회로와 전자기장 시뮬레이션을 통해 얻은 안테나의 방사 전력의 비교 및 분석)

  • Yousaf, Jawad;Kim, Kwangho;Nah, Wansoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1275-1276
    • /
    • 2015
  • Full wave electromagnetic simulation or fabricated models of an antenna are used to predict its radiation characteristics. In this work estimation of radiated power of an antenna based on its electrical model is presented. The computed radiated power using the electrical model have good agreement with the radiated power results obtained through the full wave electromagnetic simulation of the antenna model. The presented approach offers the advantage of saving of computation time of the full wave EM simulation.

  • PDF

Generation of ISAR Image for Realistic Target Model Using General Purpose EM Simulators (범용 전자기파 시뮬레이터를 이용한 사실적 표적 모델에 대한 역합성 개구면 레이다 영상 합성)

  • Kim, Seok;Nikitin, Konstantin;Ka, Min-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.189-195
    • /
    • 2015
  • There are many research works on the SAR image generation using EM(Electro Magnetic) simulation. Particularly, there are several dedicated S/Ws for SAR image generation and analysis. But, most of them are not available to the public due to the reason for defense and security. In this paper, we describe the generation of ISAR images for a realistic target model using the general purpose EM simulator like FEKO. This method can benefit us many advantages like building the database of many targets for target recognition with cost-and-time effective way.

Analysis of revised regulatory guidance on electromagnetic interference qualification for nuclear safety

  • In Beom Ahn;Jaeyul Choo ;Jae Yoon Park ;Hyunchul Ku ;Kyeong-Sik Min
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.870-875
    • /
    • 2023
  • In this paper, we analyzed the revised guidance on electromagnetic (EM) interference qualification of Regulatory Guide 1.180 (Revision 2), which is published by the U.S. Nuclear Regulatory Commission for electromagnetic compatibility qualification for nuclear safety, by comparing it with that of the previous version. We confirmed that the test methods and the acceptance criteria of both CE101 and CE102 tests for conductive emission and RE102 test for radiating emission are changed in the recently revised Regulatory Guide 1.180 (Revision 2). Furthermore, we found that the revised Regulatory Guide 1.180 provides flexibility in the use of alternative methods for EM interference (EMI) qualification, in that a mix of the various base-standards is technically allowed. In addition, the primary revision of the updated Regulatory. Guide 1.180 is that MIL-STD-461G is to be adopted as the latest base-standard, instead of MIL-STD-461E. To evaluate the influence on EMI qualification for nuclear safety due to the endorsement of MIL-STD-461G, we thoroughly analyzed the modifications in the acceptance criteria and test methods for EMI qualification, and then validated the analyzed effect on the EMI qualification, which is caused by the revision of MIL-STD-461, by performing electromagnetic simulation for equipment under RE102 test.

Investigation on the Electromagnetic Characteristics of CMOS Rectangular Spiral Inductors according to the Geometrical Change (CMOS 직사각형 나선 인덕터의 기하학적 변화에 따른 전자기적 특성에 관한 연구)

  • Jin Kyoung-Shin;Kim Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.125-130
    • /
    • 2004
  • The characteristics of on-chip spiral rectangular inductors in CMOS process are investigated through the simulation and experiment. The ADS-momentum is used for EM simulation, and the spiral inductors are fabricated with Hynix 0.35㎛ CMOS process. This research mainly concerned the effects of the geometric change in terms of the number of turns and the width of micro strip line. The measured and simulated results show that the Hynix 0.35㎛ process could support a top metal spiral inductor of 1nH to 6nH with Q-factor less than 5.

Design of Multi-layer VCO for 960 MHz Band (960 MHz대역 다층구조 VCO 설계)

  • 이동희;정진휘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.492-498
    • /
    • 2002
  • In this paper, we present the simulation results of multi-layer VCO(voltage controlled oscillator), which is composed of resonator, oscillator, and buffer circuit, using EM simulator and nonlinear RF circuit simulator. EM simulator is used for obtaining the EM(Electromagnetic) characteristics of conductor pattern as well as designing the multi-layer VCO. Obtained EM characteristics were used as real components in nonlinear RF circuit simulation. Finally the overall VCO was simulated by the nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was Dupont 951AT, which will be applied for LTCC process. The structure of multi-layer VCO is constructed with 4 conducting layer. Simulated results showed that the output level was about 4.5 [dBm], the phase noise was -104 [dBc/Hz] at 30 [kHz] offset frequency, the harmonics -8 dBc, and the control voltage sensitivity of 30 [MHz/V] with a DC current consumption of 9.5 [mA]. The size of VCO is $6{\times}9{\times}2 mm$(0.11 [cc]).