• Title/Summary/Keyword: ELECTRICAL RESISTIVITY

Search Result 2,834, Processing Time 0.025 seconds

Applicability of Resistivity/Capacitance Measurement on CPT Module for Investigation of Subsurface Contamination (오염지반 조사를 위한 전기비저항/정전용량 측정콘의 적용성 평가)

  • Oh, Myoung-Hak;Kim, Yong-Sung;Yoo, Dong-Ju;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.330-337
    • /
    • 2006
  • Resistivity cone penetrometer test (RCPT) can be employed at a relatively low cost for delineation of subsurface contamination in situ, and then be supplemented with a minimum confirmatory sampling and laboratory testing program. While the resistivity measurement have potential to investigate the subsurface contamination, resistivity measurements alone will lead to some degree of ambiguity in the results. In this study, capacitance measurement was incorporated into the RCPT to overcome the ambiguity inherent in electrical resistivity measurements for delineating the subsurface contamination. This study is focused on verifying the applicability of resistivity and capacitance measurements on CPT module to provide information on contaminated subsurface by heavy metal and petroleum hydrocarbon. Laboratory model tests were performed to evaluate the sensitivity of the measured resistivity and relative capacitance on the water content and different types of contaminants. Test results show that simultaneous measurement of electrical resistivity and capacitance can give more reliable information on subsurface contamination.

  • PDF

Apparent Soil Resistivity Calculation Using Complex Image Method (복소수이미지 방법을 이용한 겉보기 대지저항률 계산)

  • Kim, Ho-Chan;Boo, Chang-Jin;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.318-321
    • /
    • 2019
  • The apparent soil resistivity is used for estimating multilayer soil parameters, such as, layer's depth and soil resistivity. The apparent soil resistivity can be measured, and also can be calculated if soil parameters are given, becacuse the apparent soil resistivity is a function of these parameters. Therefore, any optimization algorithms can be used to find these parameters which make the calculated apparent soil resistivity close to the measured one. The equation for calculating the apparent soil resistivity is complicated and time consumed, because it is composed of an infinite integral which includes a zero order Bessel's function of the first kind. In this paper, a fast algorithm for calculating the apparent soil resistivity of horizontal multilayer earth structure has been presented using complex image method.

Frequency relativity of soil resistivity (대지저항률의 주파수 의존성)

  • 이복희;조성철;엄주홍
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.373-376
    • /
    • 2003
  • A new method measuring soil resistivity in frequency range of 5-500[KHz] using variable frequency inverter was presented, and soil resistivity was analysed by resistive and reactive components on the basis of magnitude and phase of measured ground impedance. The test lead arrangement was proposed to reduce the inductive coupling in test circuit for measuring the soil resistivity. The frequency dependence of soil resistivity was mainly caused by the inductive current flowing through grounding conductors over the frequency of 70[KHz].

  • PDF

The Electrical Properties and Unconfined Compression Strength of Bottom Ash (Bottom Ash의 전기적 특성과 일축압축강도)

  • Kim, Tae-Wan;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.21-30
    • /
    • 2014
  • The objective of this study is to find the electrical properties of Bottom ash from thermoelectric power plants in Korea. By using Parallel Plate Method, the electrical resistivity and dielectric constant were measured at the frequency from 20 Hz to 10 MHz. Also, unconfined strength test, XRF and sieve analysis were performed for finding the relationship between strength, physiochemical properties and electrical properties. In the result, the change of electrical resistivity and dielectric constant of bottom ash against frequency was similar to that of general soil. The proportion of fine grain in bottom ash had the positive correlation with dielectric constant and negative correlation with electrical resistivity. Chloride and sulfur trioxide were proportional to dielectric constant and the more bottom ash had chloride content, the lower electrical resistivity appeared in bottom ash. Unconfined strength of bottom ashes had a range from 200 kPa to 780 kPa and strength was inverse proportional to electrical resistivity.

An Electrical Resistivity Survey for Leachate Investigation at a Solid Waste Landfill (폐기물 매립지 침출수 조사를 위한 전기비저항 탐사)

  • Lee, Keun-Soo;Cho, In-Ky;Mok, Jong-Koo;Kim, Jeong-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The electrical resistivity method is an effective geophysical tool to detect subsurface contamination because the contaminated zones show generally lower electrical resistivity. In this study, the electrical resistivity surveys were applied to a waste landfill site to image the subsurface structure around the landfill and to identify the contaminated zones. First, the dipole-dipole 2D resistivity surveys were conducted along the boundaries of landfill to define the developed contaminated zones. Then the crosshole resistivity tomography was applied to confirm the suspected contaminated zones at depth. The results of drilling and geochemical analysis of ground water supported that the low resistivity zones coincide well with the contaminated zones and the leachate pathways could be delineated effectively from the resistivity survey.

Interfacial Properties and Curing Behavior of Carbon Fiber/Epoxy Composites using Micromechanical Techniques and Electrical Resistivity Measurement (Micromechanical 시험법과 전기적 고유저항 측정을 이용한 탄소섬유강화복합재료의 계면 물성과 경화거동에 관한 연구)

  • 이상일;박종만
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.17-21
    • /
    • 2000
  • Logarithmic electrical resistivity of the untreated or thin diameter carbon fiber composite increased suddenly to the infinity when the fiber fracture occurred by tensile electro-micromechanical test, whereas that of the ED or thick fiber composite increased relatively broadly up to the infinity. Electrical resistance of single-carbon fiber composite increased suddenly due to electrical disconnection by the fiber fracture in tensile electro-micromechanical test, whereas that of SFC increased stepwise due to the occurrence of the partial electrical contact with increasing the buckling or overlapping in compressive test. Electrical resistivity measurement can be very useful technique to evaluate interfacial properties and to monitor curing behavior of single-carbon fiber/epoxy composite under tensile/compressive loading.

  • PDF

STIFFNESS AND POROSITY EVALUATION USING FIELD VELOCITY RESISTIVITY PROBE

  • Lee, Jong-Sub;Yoon, Hyung-Koo;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.24-30
    • /
    • 2010
  • The void ratio and elastic moduli are design parameters used in geotechnical engineering to understand soil behavior. Elastic and electromagnetic waves have been used to evaluate the various soil characteristics due to high resolution. The objective of this study is to evaluate the void ratio and elastic moduli based on elastic wave velocities and electrical resistivity. The Field Velocity Resistivity Probe (FVRP) is developed to obtain the elastic and electromagnetic wave profiles of soil during penetration. The Piezoelectric Disk Elements (PDE) and Bender Elements (BE) are used as transducers for measuring the elastic wave velocities such as compressional and shear wave velocities. The Electrical Resistivity Probe (ERP) is also installed for capturing the electrical resistivity profile. The application test is carried out on the southern coast of the Korean peninsula. The field tests are performed at a depth of 6~20 m, at 10 cm intervals for measuring elastic wave velocities and at 0.5cm intervals for measuring electrical resistivity. The elastic moduli such as constraint and shear moduli are calculated by using measured elastic wave velocities. The void ratios are also evaluated based on the elastic wave velocities and the electrical resistivity. Furthermore, the converted void ratios by using FVRP are compared with the volumetric void ratio obtained by a standard consolidation test. The comparison shows that the void ratios based on the FVPR match the volume based void ratio well. This study suggests that the FVRP may be a useful device to effectively determine the elastic moduli and void ratio in the field.

  • PDF

Use of Two Dimensional Electrical Resistivity Tomography to Identify Soil Water Dynamics and the Effective Plant Root Zone

  • Yoon, Sung-Won;Zhang, Yong-Seon;Han, Kyung-Hwa;Jo, Hee-Rae;Ha, Sang-Keun;Park, Sam-Kyeu;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.353-359
    • /
    • 2012
  • The identification of effective root zone would clarify dynamics of plant available water and soil water balance. Using the relationship between soil properties and electrical resistivity (ER) the purpose of this research is to identify soil zone affected by a plant root activity using electrical resistivity tomography (ERT) technique. Four plastic containers were prepared for two different soil textures (clay and sandy loam) and one container for each texture was selected for planting four corn seedlings (Zea mays L.) and the others were prepared for the blank. For ERT monitoring, we prepared 0.8 m plastic sticks with 17 electrodes installed with 5 cm space. The Ministing (AGI Inc., Texas) instrument for electrical resistivity measurement and semi-auto converter of electrode arrangement were set up for dipole-dipole array. During 2 months of the corns growing, ERT monitoring was made 3 to 4 days after the irrigation practice. Despite of the same amount water supplied into soils, two textures showed very different apparent resistivity values due to different clay content. The apparent electrical resistivity is consistently lower in clay loam comparing to sandy loam soil implying that plant root does not significantly alter the overall trend of resistivity. When plant root system, however, is active both soils with plants showed 2-7 times higher electrical resistivity and higher coefficient variation than soils without plant, implying the effect of root system on the resistivity, in which may caused by. This result suggests plant root activities regulating the soil water dynamics mainly control the variation of electrical resistivity over soil textural difference. Therefore the identification of water uptake zone would highly be correlated to plant root activities, thus ERT will be feasible approach to identify spatial characteristics of a plant root activity.

Electrical Resistivity Survey on the Geolgical Structure of the Bonghwajae Area in the Okchon Zone (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資原)에 관(關)한 연구(硏究) -봉화재 지역(地域)에 대(對)한 전기비저항탐사(電氣比抵抗探査)-)

  • Min, Kyung Duck;Kim, Chang Ryol;Yun, Chun Sung;Chung, Seung Hwan
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.131-137
    • /
    • 1988
  • Geological and electrical resistivity surveys were carried out to investigate subsurface geology and geologic structure of the Bonghwajae area in the Okchon zone. Pseudosections of the apparent electrical resistivity distribution along the three survey lines were obtained by using dipole-dipole electrode array method, and models of subsurface geology and geologic structure by using two dimensional finite difference method. The Bonghwajae fault zone exists around Bonghwajae area in the north-south direction, and is a boundary between Okchon Group and Choson Supper Group. Metabasite and hornblende gabbro intruded along the Bonghwajae fault zone remaining two fracture zones with low resistivity value of 20 ohm-m and widths of about 100m and 70-300m. They strike nearly N-S and dip westward with a high angle of $60-70^{\circ}$. Sochangri fault with a width of about 160m exists between Jisogori and Bonghwajae, by which Bonghwajae fault zone is displaced about 1km in the east-west direction. Hornblende gabbro whose electrical resistivity value is in the range of 5000-8000 ohm-m intruded the metabasite of 2000-4500 ohm-m after the Sochangri fault had formed. Great Limestone Group is widely distributed in the east of Bonghwajae fault zone, and interbeds so called Yongam formation of graphitic black slate with an extremely low electrical resistivity value of 2 ohm-m.

  • PDF

Influence of Chloride Content of on Electrical Resistivity in Concrete (콘크리트내 염소이온량이 전기저항에 미치는 영향)

  • Yoon, In-Seok;Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.90-96
    • /
    • 2014
  • The electrical resistivity of concrete can be related to two processes involved in corrosion of reinforcement: initiation (chloride penetration) and propagation (corrosion rate). The resisistivity of concrete structure exposed to chloride indicates the risk of early corrosion damage, because a low resistivity is related to rapid chloride penetration and to high corrosion rate. Concrete resistivity is a geometry-independent material property that describes the electrical resistance, which is the ratio between applied voltage and resulting current in a unit cell. In previous study, it was realized that the resistivity of concrete depended on the moisture content in the concrete, microstructural properties, and environmental attack such as carbonation. The current is carried by ions dissolved in the pore liquid. While some data exist on the relationship between moisture content on electrical resistivity of concrete, very little research has been conducted to evaluate the effect of chloride on the conduction of electricity through concrete. The purpose of this study is to examine and quantify the effect of chloride content on surface electrical resistivity measurement of concrete. It was obvious that chloride content had influenced the resistivity of concrete and the relationship showed a linear function. That is, concrete with chloride ions had a comparatively lower resistivity. Decreasing rate of resistivity of concrete was clear at early time, however, after 50 days resistivity was constant irrespective of chloride concentration. Conclusively, this paper suggested the quantitive solution to depict the electrical resistivity of concrete with chloride content.