• 제목/요약/키워드: EL Efficiency

검색결과 335건 처리시간 0.023초

전기발광고분자의 양자효율 측정 (Determination of photo- and electroluminescence quantum efficiency of semiconducting polymers)

  • 이광희;박성흠;김진영;진영읍;서홍석
    • 한국광학회지
    • /
    • 제13권2호
    • /
    • pp.128-133
    • /
    • 2002
  • 최근 주목을 받고 있는 고분자 발광다이오드의 개발에 있어서, 발광고분자의 Photoluminescence(PL)와 Electroluminescence (EL) 양자효율 측정은 소자의 성능개선 연구 등에 있어서 가장 핵심적인 요소 중 하나로 여겨진다. 이러한 이유에서 본 연구에서는 잘 알려진 발광고분자인 Poly(2-methoxy-5(-(2-ethyl-hexyloxy)- 1,4-phenylenevinylene) (MEH- PPV)를 이용하여 시편을 제작하고, 적분구 측정법을 이용하여 이의 P교라 EL 양자효율을 구하였다. 그 결과 본 연구진이 개발한 MEH-PPV의 PL 양자효율은 8$\pm$2%로 측정되었는데, 이는 세계적으로 알려져 있는 ~9%의 결과에 거의 접근함을 보였다. 한편, 이 물질을 이용하여 고분자 발광다이오드를 제작한 결과, 이의 EL양자효율은 0.02 1m/W로 측정되었다. 본 연구를 통하여 확립된 발광고분자의 양자효율 측정법은 국내의 유기발광소자 연구에 큰 기여를 하리라 기대된다.

Poly(3-hexylthiophene) 발광소자의 금속전극 의존성 (Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device)

  • 서부완;김주승;김형곤;이경섭;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF

Co-doping을 이용한 OLED의 발광 효율 향상 (Improving electroluminescent efficiency of organic light emitting diodes by co-doping)

  • 박영욱;김영민;최진환;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.81-82
    • /
    • 2006
  • Doping is a well-known method for improving electroluminescent (EL) efficiency of organic light emitting diodes. In our study, doping with 2 materials simultaneously, we could achieve improved EL efficiency. The emission layer was tris-(8-hydroxyquinoline)aluminum, and the 2 dopants were N,N'-dimethyl-quinacridone (DMQA) and 10-(2-Benzothiazolyl)-2, 3, 6, 7-tetrahydro-1,1,7,7,-tetramethyl 1-1H, 5H, 11H-[1] benzopyrano [6,7,8-ij]quinolizin-11-one (C-545T). The EL intensity of co-doped device was nearly flat, it shows that co-doping technique could be a effective way to improve the EL efficiency. EL efficiency of Single-doped device based on DMQA and C-S45T were ~6.47Cd/A and ~7.45Cd/A, respectively. Co-doped device showed higher EL efficiency of ~8.30Cd/A.

  • PDF

High efficiency and long lifetime green OLED with a new electron transport material and a three-component RGB white OLED for full-color display applications.

  • Tokairin, Hiroshi;Kuma, Hitoshi;Yamamoto, Hiroshi;Funahashi, Masakazu;Fukuoka, Kenichi;Hosokawa, Chishio
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1138-1142
    • /
    • 2005
  • We achieved a highly efficient green OLED with an efficiency of 30cd/A by using a new electron transport material and optimizing the device structure. The luminous efficiency was 16.8lm/W at $3000cd/m^2$ and the lifetime was over 60,000hr at an initial luminance of $1000cd/m^2$. Furthermore, we obtained a threecomponent RGB white OLED by using the highly efficient green material. This RGB white OLED shows more excellent color reproducibility for full color displays with color filters, compared to a twocomponent white OLED.

  • PDF

피라졸 유도체를 함유한 폴리알킬플루오렌 공중합체의 향상된 EL 특성 (Highly Enhanced EL Properties of PF Copolymers with Pyrazole Derivatives)

  • 강인남;이지훈
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.539-544
    • /
    • 2010
  • We have synthesized new blue electroluminescent polyalkylfluorene-based copolymers [poly(F-co-Py)x:y, where x:y = 99:1 or 95:5 mole ratios] containing the hole-injecting pyrazole derivative [3,3'-(4,6-bis(octyloxy)-1,3-phenylene)bis(1,5-diphenyl-4,5-dihydro-1H-pyrazole] through Ni(0) mediated polymerization, and their electroluminescent properties were investigated. Electroluminescent (EL) devices were fabricated with ITO / PEDOT:PSS (110 nm) / copolymers or PF homopolymer (80 nm) / Ca (50 nm) / Al (200 nm) configuration. Each EL device constructed from the copolymer exhibited significantly enhanced brightness and efficiency compared with a device constructed from the PF homopolymer. The EL device constructed with poly(F-co-Py)99:1 exhibited the highest luminous efficiency and brightness (0.95 cd/A and $2,907\;cd/m^2$, respectively). The achieved luminous efficiency was an excellent result, providing almost a 4-fold improvement on the efficiency obtainable with the a PF homopolymer device. This enhanced efficiency of the copolymer devices results from their improved hole injection and more efficient charge carrier balance, which arises from the HOMO level (~5.83 eV) of the poly(F-co-Py)99:1 copolymer, which is higher than that of the PF homopolyme (~5.90 eV).

PVK:Bu-PBD:C6 단일층 녹색발광소자의 양자효율 개선에 관한 연구 (The Study on the Improved Quantum Efficiency of the PVK:Bu-PBD:C6 Single Layer Green Light Emitting Devices)

  • 조재영;노병규;오환술
    • 한국전기전자재료학회논문지
    • /
    • 제14권11호
    • /
    • pp.922-927
    • /
    • 2001
  • Single-layer green ELs was fabricated with using molecularly-dispersed Bu-PBD into poly-N-vinylcarbazole(PVK) which has low operating voltage and high quantum efficiency. A EL cell structure of glass substrate/indium-tin-oxide/PVK:Bu-PBD:C6(∼ 100nm)/Ca(20nm)/Al(20nm) was employed with variable doping concentration. The keys to obtain high quantum efficiency was excellent film forming capability of molecularly dispersed into PVK and appropriate combination of cathode for avoiding exciplex. We obtained the turn-on voltage of 4.2V and quantum efficiency of 0.52% at 0.lmol% of C6 concentration which has been improved about a factor of 50 in comparison with the undoped cell. The PL peak wavelengths wouldn\`t be turned by changing the concentration of the C6 dopant. Green EL emission peak and FWHM were 520nm and 70nm respectively. PL emission peak was obtained at 495nm.

  • PDF

유기EL과 무기EL에 관한 연구 (A Development of Distributed Parallel Processing algorithm for Power Flow analysis)

  • 이한성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.67-71
    • /
    • 2001
  • Nowdays, we can communicate using Information Technology such as internet, personal computer, mobile phone etc. To protect global environment, it is also reqired to invent products efficiently reduce energy consumption. here, I studied organic EL and inorganic EL because organic EL display is appropriate device as light, thin, energy-saying display following CRT, LCD. As a result, I realized that we are supposed to study more on invention, efficiency and mass-production of materials. Comparing with another display, however, it would be marketable in few years, considering short history of its full-scaled studies.

  • PDF

PVK/P3DoDT 블랜드를 발광층으로 사용한 EL 소자의 발광효율 향상에 관한 연구 (Improvement of external quantum efficiency of EL devices with PVK/P3DoDT blends using as a emitting layer)

  • 김주승;서부완;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.96-99
    • /
    • 2000
  • We fabricated electroluminescent(EL) devices which have a blended single emitting layer containing poly(N-vinylcarbazole)[PVK] and poly(3-dodecylthiophene)[P3DoDT]. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer, between polymer emitting layer and Al electrode. All of the devices emit orange-red light and its can be explained that the energy transfer occurs from PVK to P3DoDT. In the voltage-current and voltage-light power characteristics of devices applied LiF layer, current and light power drastically increased with increasing applied voltage. In the consequence of the result, the external quantum efficiency of the devices that have a molar ratio 1:1 with LiF layer was 35 times larger than that of the device without LiF layer at 6V.

  • PDF

ZnS 완충층을 사용한 SrS : Ce, Cl 박막 EL 소자의 효율 (Luminous Efficiency of SrS:Ce, Cl EL Device with ZnS Buffer Layer)

  • 임영민;최광호;장보현
    • 한국광학회지
    • /
    • 제2권3호
    • /
    • pp.115-120
    • /
    • 1991
  • ZnS 완충층이 SrS : Ce, Cl 박막 EL cell의 발광휘도 및 효율에 미치는 영향을 조사하였다. ZnS 완충층을 사용한 cell과 사용하지 않은 cell의 구동전압은 각각 210V, 220V 이상이고 주파수 범위는 500 Hz-20kHz로 하였다. 측정범위 내에서 휘도는 주파수와 이동전하밀도의 곱에 비례하고, 한편 이동전하밀도는 주파수에 무관하고 구동전압에 비례한다. 결과적으로 발광효율은 주파수와 구동전압에 무관하다. 완충층을 사용하므로 활성층의 발광특성을 향상시킬 수 있으며, 발광효율은 완충층 유무에 따라 각각 0.12 lm/W, 0.06 lm/W 이다.

  • PDF

Light-emitting devices with polymer-organic heterostructure

  • Do, Lee-Mi;Hwang, Do-Hoon;Choi, Kang-Hoon;Lee, Hyang-Mok;Jung, Sang-Don;Zyung, Taehyoung
    • Journal of the Optical Society of Korea
    • /
    • 제1권2호
    • /
    • pp.116-119
    • /
    • 1997
  • Highly quantum efficient and multi-color emissible polymer light emitting devices have been realized utilizing poly (1-dodecyloxy-4-methyl-1, 3-phenylene)(2, 5"-terthienylene)(hereafter, mPTTh polymer) as an emitting layer and tris(8-hydroxyquinoline) aluminum (Alq3) as an electron transport layer. A single layer EL device of mPTTh polymer emits orange-colored light. EL efficiency increases as the thickness of Alq3 layer increases, but the emission color becomes visually broad when the Alq3 layer thickness is greater than 30nm since the relative peak intensity of green EL from Alq3 layer grows. EL color is changed from orange to greenish orange as the thickness of Alq3 layer grows. EL color is changed from orange to greenish orange as the thickness of Alq3 layer increases. EL efficiency of the double layer device was greatly enhanced by 3000 times compared with that of a single layer device. Alq3 layer in device acts as a hole blocking electron transporting layer and an emitting layer as a function of the thickness of Alq3 layer.ayer.