• Title/Summary/Keyword: EINOx Scaling

Search Result 6, Processing Time 0.016 seconds

EINOx scaling of H2/CO Syngas Non-premixed Turbulent Jet Flame (H2/CO 합성가스의 난류 제트 확산화염에서 EINOx Scaling)

  • Hwang, Jeongjae;Sohn, Kitae;Kim, Taesung;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.55-58
    • /
    • 2012
  • EINOx scaling for $H_2/CO$ non-premixed turbulent jet flame was conducted. NOx concentration and flame length were measured simultaneously with varying flow conditions. Flame length increases with Reynolds number which means the flames in buoyancy-momentum transition region. We assessed the previous Chen & Driscoll's scaling with present results. However, the scaling cannot satisfy the present results. We proposed new scaling which is addressed the simplified flame residence time. The new scaling satisfies the results of $H_2/CO$ syngas flame as well as pure hydrogen flames.

  • PDF

Flame Length and EINOx Scaling of Syngas $H_2$/CO Turbulent Non-premixed Jet Flames ($H_2$/CO 합성가스의 비예혼합 난류 제트화염에서 화염 길이와 EINOx 스케일링)

  • Hwang, Jeongjae;Sohn, Kitae;Bouvet, Nicolas;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.30-37
    • /
    • 2012
  • The flame lengths and NOx emission characteristics of syngas $H_2$/CO turbulent non-premixed jet flames were investigated. The flame length which is the main parameter governs NOx emission was studied for various syngas compositions. The flame length was compared with previous correlation between Froude number and flame height and it shows that they have good agreements. It was confirmed that the turbulent jet flames herein investigated are in the region of buoyancy-momentum transition. NOx emission was reduced with increased Reynolds number and CO contents in syngas fuel and with decreased fuel nozzle diameter which is attributed by decreased flame residence time. Previous EINOx scaling based on flame residence time of $L_f^3/(d_f^2U_f)$ satisfies only the jet flame in momentum-dominated region, not buoyancy-momentum transition region. The simplified flame residence time ($L_f/U_f$) was adopted in modified EINOx scaling. The modified scaling satisfies the jet flames not only in momentum-dominated region but in buoyancy-momentum transition region. The scaling is also satisfied with $H_2$/CO syngas jet flames.

Characteristics of NOx Emission in a Swirl Flow in Nonpremixed Turbulent Hydrogen Jet with Coaxial Air (수소 난류 확산화염에서의 선회류에 의한 배기배출물 특성)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • The effect of swirl flow on NOx in a nonpremixed turbulent hydrogen jet with coaxial air was studied. The swirl vane angle was varied from $30^{\circ}$ to $90^{\circ}$. The fuel jet air velocity and coaxial air velocity were varied in an attached flame region as $u_F=85{\sim}160m/s$ and $u_A=7{\sim}14m/s$. The objective of the current study was to analyze the characteristics of nitrous oxide emission in a swirl flow and to propose a new parameter for EINOx scaling. The experimental results show that EINOx decreases with the swirl vane angle and increased with flame length. Further, EINOx scaling factors can be determined by considering the effective diameter ($d_{F,eff}$) in a far field concept. The EINOx increased in proportion to the flame residence time (${\sim}{\tau_R}^{1/2.8}$) and the global strain rate (${\sim}{S_G}^{1/2.8}$).

An Experimental Study on Scaling of Nitrogen Oxide emissions of H2/CO Non-premixed Turbulent Jet Flame with Coaxial Air (동축공기가 있는 H2/CO 비예혼합 난류 제트화염의 질소산화물 배출 상사식에 대한 실험적 연구)

  • Sohn, Kitae;Hwang, Jeongjae;Bouvet, Nicolas;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.259-261
    • /
    • 2012
  • The effect of fuel composition and coaxial air on the nitrogen oxide emission index was studied in a non-premixed turbulent jet flame. Validity of experimental setup and methodology is checked. The NOx emission trend is similar with previous works in hydrogen flame, but it's not well in $H_2/CO$ flame. Normalized EINOx scaling with modified $S_G$ applying near-field concept was conducted. Experimental data don't collapse single correlation curve, but partially same trend is observed in all cases.

  • PDF

Analysis of NOx Emissions in Thrbulent Nonpremixed Hydrogen-Air Jet Flames with Coaxial Air (동축 수소 확산화염에서의 NOx 생성 분석)

  • Park, Y.H.;Kim, S.L.;Moon, H.J.;Yoon, Y.B.;Jeung, I.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The characteristics of NOx emissions in pure hydrogen nonpremixed flames with coaxial air are analyzed numerically for the three model cases of coaxial air flames classified by varying coaxial air velocity and/or fuel velocity. In coaxial air flames, the flame length is reduced by coaxial air and can be represented as a function of the ratio of coaxial air to fuel velocity. Coaxial air decreases flame reaction zone, resulting in reducing flame residence time significantly. Finally, the large reduction of EINOx is achieved by the decrease of the flame residence time. It is found that because coaxial air can break down the flame self-similarity law, appropriate scaling parameters, which are different from those in the simple jet flames, are recommended. In coaxial air flames, the flame residence time based on the flame volume produces better results than that based on a cube of the flame length. And some portion of deviations from the 1/2 scaling law by coaxial air may be due to the violation of the linear relationship between the flame volume and the flame reaction zone.

  • PDF

Numerical Prediction of NOx in the Nonpremixed Hydrogen-Air Flame using the Quasi-Laminar Reaction Modelling (준충류 근사를 이용한 수소-공기 비예혼합화염의 질소산화물 생성예측)

  • Kim, Seong-Lyong;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • A Numerical Analysis of NOx production in Hydrogen-Air flame is performed using the quasi-laminar reaction modelling. As results, in low global strain rate region, $U_F/D_F\;{\leq}\;50,000$, the quasi-laminar reaction modelling reproduces the experimentally observed EINOx half power scaling that the ratio of EINOx and flame residence time, $L_f^3(D_F^2U_F)$, is proportional to the square root of global strain rate. Thus, it suggests that turbulence-chemistry interaction has a minor impact on the trend of NOx production in low global strain rate region. However, the quasi-laminar reaction modelling predicts the higher temperature and NOx than experimentally observed. This overprediction may be due to the lack of radiation and quasi-laminar reaction modelling.

  • PDF