• 제목/요약/키워드: EIF2C2

검색결과 6건 처리시간 0.016초

Expression of PACT and EIF2C2, Implicated in RNAi and MicroRNA Pathways, in Various Human Cell Lines

  • Lee, Yong-Sun;Jeon, Yesu;Park, Jong-Hoon;Hwang, Deog-Su;Dutta, Anindya
    • Animal cells and systems
    • /
    • 제8권3호
    • /
    • pp.213-220
    • /
    • 2004
  • MicroRNA and siRNA (small interfering RNA), representative members of small RNA, exert their effects on target gene expression through association with protein complexes called miRNP (microRNA associated ribonucleoproteins) and RISC (RNA induced silencing complex), respectively. Although the protein complexes are yet to be fully characterized, human EIF2C2 protein has been identified as a component of both miRNP and RISC. In this report, we raised antiserum against EIF2C2 in order to begin understanding the protein complexes. An immunoblot result indicates that EIF2C2 protein is ubiquitously expressed in a variety of cell lines from human and mouse. EIF2C2 protein exists in both cellular compartments, as indicated by an immunoblot assay with a nuclear extract and a cytosolic fraction (S100 fraction) from HeLa S3 lysate. Depletion of EIF2C1 or EIF2C2 protein resulted in a decrease of microRNA, suggesting a possible role of these proteins in microRNA stability or biogenesis. We also prepared antiserum against dsRNA binding protein PACT, whose homologs in C. elegans and Drosophila are known to have a role in the RNAi (RNA interference) pathway. The expression of PACT protein was also observed in a wide range of cell lines.

몇 가지 생약재의 열수 추출물에 대한 Ethanol 분획물의 항산화 효과 (Antioxidative Effect of Ethanol Fraction for Several Korean Medicinal Plant Hot Water Extracts)

  • 김영언;이영철;김현구;김철진
    • 한국식품영양학회지
    • /
    • 제10권2호
    • /
    • pp.141-144
    • /
    • 1997
  • 국내산 재배 생약류 28종 중 열수 추출물에서 항산화력을 나타낸 것으로 조사된 작약, 목단, 황금, 두충, 시호 그리고 산수유의 열수 추출물 6종을 냉동건조한 후 70% ethanol로 용해하여 ethanol 가용성 획분(ESF)과 ethanol 불용성 획득(EIF)으로 분획하였다. 이 분획물들을 60% linoleic acid에 3,000ppm씩 가한 후 35$^{\circ}C$의 항온기에서 저장하면서 BHA 첨가구와의 산화 안정성을 비교하였다. 이 결과 작약가 항금의 ESF는 유도기간이 각각 12일과 9일인데 반해 BHA 첨가구는 9일로 나타나 산화 안정성이 더 높거나 같은 것으로 나타났다. 한편 6종의 생약류의 ESF는 EIF보다 linoleic acid에 대한 항산화 효과가 모두 높은 것으로 나타났다.

  • PDF

Hydrogen sulfide ameliorates abdominal aorta coarctation-induced myocardial fibrosis by inhibiting pyroptosis through regulating eukaryotic translation initiation factor 2α phosphorylation and activating PI3K/AKT1 pathway

  • Yaling Li;Zhixiong Wu;Jiangping Hu;Gongli Liu;Hongming Hu;Fan Ouyang;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.345-356
    • /
    • 2023
  • This study aimed to assess the effects of exogenous hydrogen sulfide (H2S) on abdominal aorta coarctation (AAC) induced myocardial fibrosis (MF) and autophagy in rats. Forty-four Sprague-Dawley rats were randomly divided into control group, AAC group, AAC + H2S group, and H2S control group. After a model of rats with AAC was built surgically, AAC + H2S group and H2S group were injected intraperitoneally with H2S (100 µmol/kg) daily. The rats in the control group and the AAC group were injected with the same amount of PBS. We observed that H2S can improve left ventricular function and the deposition of myocardial collagen fibers, inhibit pyroptosis, down-regulate the expression of P-eif2α in myocardial tissue, and inhibit cell autophagy by activating the phosphatidylinositol 3-kinase (PI3K)/AKT1 signaling pathway (p < 0.05). In addition, angiotensin II (1 µM) H9c2 cardiomyocytes were injured in vitro experiments, and it was also observed that pyroptosis was inhibited after H2S (400 µmol/kg) intervention, the expression of P-eif2α in cardiomyocytes was significantly down-regulated, and the PI3K/AKT1 signaling pathway was activated at the same time. Therefore, increasing the expression of P-eif2α reverses the activation of the PI3K/AKT1 signaling pathway by H2S. In conclusion, these findings suggest that exogenous H2S can ameliorate MF in rats with AAC by inhibiting pyroptosis, and the mechanism may be associated with inhibiting the phosphorylation of eif2α and activating the PI3K/AKT1 signaling pathway to inhibit excessive cell autophagy.

Systematical Analysis of Cutaneous Squamous Cell Carcinoma Network of microRNAs, Transcription Factors, and Target and Host Genes

  • Wang, Ning;Xu, Zhi-Wen;Wang, Kun-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10355-10361
    • /
    • 2015
  • Background: MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. Materials and Methods: Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. Results: Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. Conclusions: The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.

Signatures of positive selection underlying beef production traits in Korean cattle breeds

  • Edea, Zewdu;Jung, Kyoung Sub;Shin, Sung-Sub;Yoo, Song-Won;Choi, Jae Won;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • 제62권3호
    • /
    • pp.293-305
    • /
    • 2020
  • The difference in the breeding programs and population history may have diversely shaped the genomes of Korean native cattle breeds. In the absence of phenotypic data, comparisons of breeds that have been subjected to different selective pressures can aid to identify genomic regions and genes controlling qualitative and complex traits. In this study to decipher genetic variation and identify evidence of divergent selection, 3 Korean cattle breeds were genotyped using the recently developed high-density GeneSeek Genomic Profiler F250 (GGP-F250) array. The three Korean cattle breeds clustered according to their coat color phenotypes and breeding programs. The Heugu breed reliably showed smaller effective population size at all generations considered. Across the autosomal chromosomes, 113 and 83 annotated genes were identified from Hanwoo-Chikso and Hanwoo-Heugu comparisons, respectively of which 16 genes were shared between the two pairwise comparisons. The most important signals of selection were detected on bovine chromosomes 14 (24.39-25.13 Mb) and 18 (13.34-15.07 Mb), containing genes related to body size, and coat color (XKR4, LYN, PLAG1, SDR16C5, TMEM68, CDH15, MC1R, and GALNS). Some of the candidate genes are also associated with meat quality traits (ACSF3, EIF2B1, BANP, APCDD1, and GALM) and harbor quantitative trait locus (QTL) for beef production traits. Further functional analysis revealed that the candidate genes (DBI, ACSF3, HINT2, GBA2, AGPAT5, SCAP, ELP6, APOB, and RBL1) were involved in gene ontology (GO) terms relevant to meat quality including fatty acid oxidation, biosynthesis, and lipid storage. Candidate genes previously known to affect beef production and quality traits could be used in the beef cattle selection strategies.

Exosome-mediated delivery of gga-miR-20a-5p regulates immune response of chicken macrophages by targeting IFNGR2, MAPK1, MAP3K5, and MAP3K14

  • Yeojin Hong;Jubi Heo;Suyeon Kang;Thi Hao Vu;Hyun S. Lillehoj;Yeong Ho Hong
    • Animal Bioscience
    • /
    • 제36권6호
    • /
    • pp.851-860
    • /
    • 2023
  • Objective: This study aims to evaluate the target genes of gga-miR-20a-5p and the regulated immune responses in the chicken macrophage cell line, HD11, by the exosome-mediated delivery of miR-20a-5p. Methods: Exosomes were purified from the chicken macrophage cell line HD11. Then, mimic gga-miR-20p or negative control miRNA were internalized into HD11 exosomes. HD11 cells were transfected with gga-miR-20a-5p or negative control miRNA containing exosomes. After 44 h of transfection, cells were incubated with or without 5 ㎍/mL poly(I:C) for 4 h. Then, expression of target genes and cytokines was evaluated by quantitative realtime polymerase chain reaction. Results: Using a luciferase reporter assay, we identified that gga-miR-20a-5p directly targeted interferon gamma receptor 2 (IFNGR2), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase kinase kinase 5 (MAP3K5), and mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Moreover, the exosome-mediated delivery of gga-miR-20a-5p successfully repressed the expression of IFNGR2, MAPK1, MAP3K5, and MAP3K14 in HD11 cells. The expressions of interferon-stimulated genes (MX dynamin like GTPase 1 [MX1], eukaryotic translation initiation factor 2A [EIF2A], and oligoadenylate synthase-like [OASL]) and proinflammatory cytokines (interferon-gamma [IFNG], interleukin-1 beta [IL1B], and tumor necrosis factor-alpha [TNFA]) were also downregulated by exosomal miR-20a-5p. In addition, the proliferation of HD11 cells was increased by exosomal miR-20a-5p. Conclusion: The exosome-mediated delivery of gga-miR-20a-5p regulated immune responses by controlling the MAPK and apoptotic signaling pathways. Furthermore, we expected that exosomal miR-20a-5p could maintain immune homeostasis against highly pathogenic avian influenza virus H5N1 infection by regulating the expression of proinflammatory cytokines and cell death.