• Title/Summary/Keyword: EHEC O157:H7

Search Result 12, Processing Time 0.018 seconds

Genetic Comparison and Hygienical Test Between Korean Native Beef(Hanwoo) and Imported Beef(Holstein) Available in the Market (시중 유통 중인 한우와 수입쇠고기의 유전자 비교 및 위생 시험)

  • 서정희;홍준배;정윤희;김말남
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.4
    • /
    • pp.388-393
    • /
    • 1998
  • Recently there has been an increasing amount of foreign livestock products distributed in the domestic market due to the market opening. Some vicious dealers sell the foreign beef in the trade name of the native beef during the final distribution step to arouse the social criticism frequently. In this report, we investigated a method to distinguish the native beef from the foreign one scientifically using the PCR-RAPD, a recent gene technique. Hygienical safety was also examined using a microbiological test for toxicity of Escherichia coli 0157:H7 and the food poisoning bacteria. The conditions of DNA amplification for the PCR analysis were $1{\times}Taq$ polymerase buffer, 1.5 mM $MgCl_2,\;50\;\mu\textrm{M}$ dNTP, 100 ng primers, 2.5 unit Taq polymerase and 5~20 ng template DNA, with the fmal volume of $50\;\mu\textrm{\ell}$. The size of the amplified product was detected mostly in the range of 0.5~2.0 kbp. The size of DNA, gene marking factor, which could be a criterion distinguishing the native beef from the foreign one, appeared approximately 1.2 kbp. The native beef was distinguished from the foreign beef with more than 90% of confidence by the gene marking factor. This method was expected to be useful in the breed discrimination between the native beef and the foreign one. The hygienical test results showed that, fortunately, neither Salmonella spp. and Listeria monocytogenes which form a principal cause of the food poisoning nor Enterohemorrhagic Escherichia coli : EHEC which have provoked a recent social disturbance, were detected at all.

  • PDF

A Study on Dose-Response Models for Foodborne Disease Pathogens (주요 식중독 원인 미생물들에 대한 용량-반응 모델 연구)

  • Park, Myoung Su;Cho, June Ill;Lee, Soon Ho;Bahk, Gyung Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.299-304
    • /
    • 2014
  • The dose-response models are important for the quantitative microbiological risk assessment (QMRA) because they would enable prediction of infection risk to humans from foodborne pathogens. In this study, we performed a comprehensive literature review and meta-analysis to better quantify this association. The meta-analysis applied a final selection of 193 published papers for total 43 species foodborne disease pathogens (bacteria 26, virus 9, and parasite 8 species) which were identified and classified based on the dose-response models related to QMRA studies from PubMed, ScienceDirect database and internet websites during 1980-2012. The main search keywords used the combination "food", "foodborne disease pathogen", "dose-response model", and "quantitative microbiological risk assessment". The appropriate dose-response models for Campylobacter jejuni, pathogenic E. coli O157:H7 (EHEC / EPEC / ETEC), Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococcus aureus, Vibrio parahaemolyticus, Vibrio cholera, Rota virus, and Cryptosporidium pavum were beta-poisson (${\alpha}=0.15$, ${\beta}=7.59$, fi = 0.72), beta-poisson (${\alpha}=0.49$, ${\beta}=1.81{\times}10^5$, fi = 0.67) / beta-poisson (${\alpha}=0.22$, ${\beta}=8.70{\times}10^3$, fi = 0.40) / beta-poisson (${\alpha}=0.18$, ${\beta}=8.60{\times}10^7$, fi = 0.60), exponential (r=$1.18{\times}10^{-10}$, fi = 0.14), beta-poisson (${\alpha}=0.11$, ${\beta}=6,097$, fi = 0.09), beta-poisson (${\alpha}=0.21$, ${\beta}=1,120$, fi = 0.15), exponential ($r=7.64{\times}10^{-8}$, fi = 1.00), betapoisson (${\alpha}=0.17$, ${\beta}=1.18{\times}10^5$, fi = 1.00), beta-poisson (${\alpha}=0.25$, ${\beta}=16.2$, fi = 0.57), exponential ($r=1.73{\times}10{-2}$, fi = 1.00), and exponential ($r=1.73{\times}10^{-2}$, fi = 0.17), respectively. Therefore, these results provide the preliminary data necessary for the development of foodborne pathogens QMRA.