• Title/Summary/Keyword: EHEC

Search Result 52, Processing Time 0.025 seconds

Microbial Risk Assessment of Non-Enterohemorrhagic Escherichia coli in Natural and Processed Cheeses in Korea

  • Kim, Kyungmi;Lee, Heeyoung;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.579-592
    • /
    • 2017
  • This study assessed the quantitative microbial risk of non-enterohemorrhagic Escherichia coli (EHEC). For hazard identification, hazards of non-EHEC E. coli in natural and processed cheeses were identified by research papers. Regarding exposure assessment, non-EHEC E. coli cell counts in cheese were enumerated, and the developed predictive models were used to describe the fates of non-EHEC E. coli strains in cheese during distribution and storage. In addition, data on the amounts and frequency of cheese consumption were collected from the research report of the Ministry of Food and Drug Safety. For hazard characterization, a doseresponse model for non-EHEC E. coli was used. Using the collected data, simulation models were constructed, using software @RISK to calculate the risk of illness per person per day. Non-EHEC E. coli cells in natural- (n=90) and processed-cheese samples (n=308) from factories and markets were not detected. Thus, we estimated the initial levels of contamination by Uniform distribution ${\times}$ Beta distribution, and the levels were -2.35 and -2.73 Log CFU/g for natural and processed cheese, respectively. The proposed predictive models described properly the fates of non-EHEC E. coli during distribution and storage of cheese. For hazard characterization, we used the Beta-Poisson model (${\alpha}=2.21{\times}10^{-1}$, $N_{50}=6.85{\times}10^7$). The results of risk characterization for non-EHEC E. coli in natural and processed cheese were $1.36{\times}10^{-7}$ and $2.12{\times}10^{-10}$ (the mean probability of illness per person per day), respectively. These results indicate that the risk of non-EHEC E. coli foodborne illness can be considered low in present conditions.

Screening of Anti-Adhesion Agents for Pathogenic Escherichia coli O157:H7 by Targeting the GrlA Activator

  • Sin Young Hong;Byoung Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.329-338
    • /
    • 2023
  • Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that produces attaching and effacing lesions on the large intestine and causes hemorrhagic colitis. It is primarily transmitted through the consumption of contaminated meat or fresh produce. Similar to other bacterial pathogens, antibiotic resistance is of concern for EHEC. Furthermore, since the production of Shiga toxin by this pathogen is enhanced after antibiotic treatment, alternative agents that control EHEC are necessary. This study aimed to discover alternative treatments that target virulence factors and reduce EHEC toxicity. The locus of enterocyte effacement (LEE) is essential for EHEC attachment to host cells and virulence, and most of the LEE genes are positively regulated by the transcriptional regulator, Ler. GrlA protein, a transcriptional activator of ler, is thus a potential target for virulence inhibitors of EHEC. To identify the GrlA inhibitors, an in vivo high-throughput screening (HTS) system consisting of a GrlA-expressing plasmid and a reporter plasmid was constructed. Since the reporter luminescence gene was fused to the ler promoter, the bioluminescence would decrease if inhibitors affected the GrlA. By screening 8,201 compounds from the Korea Chemical Bank, we identified a novel GrlA inhibitor named Grlactin [3-[(2,4-dichlorophenoxy)methyl]-4-(3-methylbut-2-en-1-yl)-4,5-dihydro-1,2,4-oxadiazol-5-one], which suppresses the expression of LEE genes. Grlactin significantly diminished the adhesion of EHEC strain EDL933 to human epithelial cells without inhibiting bacterial growth. These findings suggest that the developed screening system was effective at identifying GrlA inhibitors, and Grlactin has potential for use as a novel anti-adhesion agent for EHEC while reducing the incidence of resistance.

Evaluation of enrichment broth and selective media for the detection of non-O157 enterohemorrhagic Escherichia coli (Non-O157 장출혈성대장균 검출을 위한 증균배지 및 선택배지 성능 평가)

  • Lee, Da Yeon;Kim, Hee-eon;Seo, Dong Won;Cho, Yong Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.323-328
    • /
    • 2016
  • In this study, specific and rapid enrichment and growth conditions for the most important, classic non-O157 enterohemorrhagic Escherichia coli (EHEC) serogroups were assessed. Three enrichment broth types, namely, EC medium with MUG broth, BRILA broth, and mTSB broth with novobiocin, were compared to identify the optimum enrichment broth for EHEC isolation. Four kinds of selective media, namely, ENDO agar, Chromocult agar, TBX agar, and CHROMagar$^{TM}$ STEC medium, were compared to identify the optimum one for non-O157 EHEC isolation. The results suggested that incubation in EC medium with MUG broth at $42^{\circ}C$ for 20 h is optimum for the enrichment of non-O157 EHEC. TBX agar was identified to have the highest specificity among the tested media. Consequently, a combination of complementary selective media according to serotype must be considered for comprehensive isolation of specific EHEC.

New Virulence Factors of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 in Dairy Food Processing

  • Moon, Yong-Il;Oh, Sangnam;Park, Mi Ri;Son, Seok Jun;Go, Gwang-woong;Song, Minho;Oh, Sejong;Kim, Sae Hun;Kim, Younghoon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.59-67
    • /
    • 2015
  • Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is well-characterized as an important food-borne pathogen worldwide and causes human diseases such as diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS) by producing shiga-like toxin (Stx). It has been reported that a number of dairy foods, including cheese, can act as the source of EHEC O157:H7 infections. In addition to the toxicity of Stx, recently it has been indicated that EHEC O157:H7 possesses virulence factors related to attachment, quorum sensing, and biofilms. Moreover, these novel virulence factors might become critical points to be considered in the future production of food derived from animals. Here, we review the evidences that support these insights on new virulence factors and discuss the potential mechanisms mediating the pathogenesis of EHEC O157:H7 in the dairy food industry.

  • PDF

Adhesion Ability and Inhibition of Enterohemorrhagic E. coli O157:H7 Adhesion to Intestinal Epithelial Cells in Lactobacillus acidophilus (Lactobacillus acidophilus의 장 상피세포에 대한 부착능력 및 장 출혈성 대장균의 부착 억제 능력)

  • 김영훈;박순옥;한경식;오세종;유승권;김세헌
    • Food Science of Animal Resources
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 2004
  • The ability of probiotics containing Lactobacillus acidophilus to adhere to the intestinal epithelium may play an important role in colonization of the gastrointestinal tract and preventing enteric pathogen such as enterohemorrhagic E. coli(EHEC O157:H7. In the study, we investigated the adhesion to human intestinal epithelial cells(HT-29) of strains of L. acidophilus(3 from human, 2 from pig, and 1 from calf). All of the tested strains of L. acidophilus were highly observed adhesion ability(from 10$\^$6/ to 10$\^$7/ cfu/mL), compared to L. rhamnosus GG as control. Also, adhered strains of L. acidophilus were significantly preserved in serial wash-out steps. However, no correlation could be observed between cell surface hydrophobicity and adhesion abilities of the tested strains of L. acidophilus. Inhibition of adhesion of EHEC O157:H7 was also examined, a 2 log cycle reduction was observed by all of the tested strains of L. acidophilus. These results suggest that the strains of L. acidophilus with high adhesion ability are resistant to wash-out and adhesion ability inhibition by selected strains of L. acidophilus helps to prevent adhesion of EHEC O157:H7 to intestinal epithelial cells.

Recombination and Expression of eaeA Gene in Enterohemorrhagic Escherichia coli O157:H7

  • Kim, Hong;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.8 no.3
    • /
    • pp.107-113
    • /
    • 2002
  • Enterohemorrhagic Escherichia coli (EHEC) strains of serotype O157:H7 have been shown to colonize the intestinal epithelial cell by the attaching and effacing (AE) mechanism. The AE lesion is mediated by an intimin, of which production and expression are controlled by a 3-Kb eaeA gene located EHEC chromosomal DNA. If the eaeA gene is mutated, EHEC O157:H7 strains lose capacity of adhesion to intestinal epithelial cells. In this study, a 891 bp of the 3'-end region of a gamma intimin was amplified by polymerase chain reaction (PCR). The PCR product was inserted into pSTBlue-1 cloning vector and transformed into DE3 (BL21) competent cell. After plasmid mini-preparation and restriction enzyme digestion of eaeA/891-pSTBlue-1 vector, target eaeA gene was re-inserted into pET-28a expression vector and was transformed. Then the expression of recombinant eaeA/891 (891 bp) gene was induced by isopropyl-$\beta$-D-thiogalactopyranoside (IPTG). The expression of the 40-KDa recombinant protein was identified in SDS-PAGE and confirmed by immunoblotting using the His.Tag$^{\circledR}$ and T$_{7}$.Tag$^{\circledR}$ monoclonal antibody. This recombinant protein expressed by eaeA gene could be applied in further studies on the mechanisms of E. coli O157:H7 infection and the development of recombinant vaccine.

  • PDF

Antibacterial Effect of Crude Extracts of Kaempferia parviflora (Krachaidam) against Cronobacter spp. and Enterohemorrhagic Escherichia coli (EHEC) in Various Dairy Foods: A Preliminary Study

  • Jeong, Dana;Kim, Dong-Hyeon;Chon, Jung-Whan;Kim, Hyunsook;Lee, Soo-Kyung;Kim, Hong-Seok;Yim, Jin-Hyuk;Song, Kwang-Young;Kang, Il-Byung;Kim, Young-Ji;Park, Jin-Hyeong;Jang, Ho-Seok;Kang, Soo-Hyun;Kim, Soo-Ki;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.63-68
    • /
    • 2016
  • Rhizomes of Kaempferia parviflora (Zingiberaceae) have been used in traditional Thai medicine for health promotion. In this study, the antibacterial activity of ethanol extract of K. parviflora against Cronobacter spp. and enterohemorrhagic Escherichia coli (EHEC) was investigated using paper disc dilution method. The results revealed that the ethanol extract exhibited antibacterial activity against Cronobacter spp. and EHEC. With an increasing concentration of K. parviflora ethanol extract, larger zones of inhibition of Cronobacter spp. and EHEC strains tested were observed. Therefore, its antibacterial activity suggested that K. parviflora could be used as a natural additive to ascertain food safety of various dairy products.

Predictive model and quantitative microbial risk assessment of enterohemorrhagic Escherichia coli and Campylobacter jejuni in milk (우유에서 장출혈성 대장균과 캠필로박터균의 행동예측 모델 개발 및 정량적 미생물 위해성 평가 연구)

  • Dong, Jiaming;Min, Kyung Jin;Seo, Kun Ho;Yoon, Ki Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.657-668
    • /
    • 2021
  • We prepared the growth and survival models of enterohemorrhagic Escherichia coli (EHEC) and Campylobacter jejuni in milk as a function of temperature and assessed the microbiological risks associated with the consumption of whole milk. EHEC and C. jejuni were not detected in whole milk (n=195) in the retail market. The minimum growth temperature of EHEC in milk was 7℃. The lag time of EHEC in whole milk was longer than that in skim milk. The survival ability of C. jejuni in milk was better at 4℃ than at 10℃. Lower delta values were observed in whole milk than in skim milk, indicating that C. jejuni survived better in skim milk. The probability of foodborne illness from whole milk consumption was 5.70×10-5 for EHEC and 9.86×10-9 for C. jejuni. Sensitivity analysis results show that the market temperature of EHEC and the dose-response model of C. jejuni are correlated with the probability of foodborne illness.

Antimicrobials Effective for Inhibition of Enterohemorrhagic Escherichia coli Strains O26, O111, and O157 and Their Effects on Shiga Toxin Releases

  • Lee, John-Hwa;Stein, Barry D.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1238-1243
    • /
    • 2009
  • The susceptibilities of major enterohemorrhagic Escherichia coli (EHEC) strains to antimicrobial agents and the cytotoxicity of these agents were examined using a total of 38 strains of E. coli O26, O111, and O157, which are the major serogroups of EHEC. Among the 38 strains, 35, 36, and 36 were susceptible to amikacin, imipenem, and norfloxacin, respectively. These antimicrobial agents were further examined to determine their cytotoxicity on Vero cells as well as their effect on the release of Shiga toxins along with trimethoprim/sulfamethoxazole. Each of the E. coli O26, O111, and O157 strains containing both the stx1 and stx2 genes were grown in the absence or presence of these agents at 1/4 minimal inhibitory concentration for 6 h, 12 h, and 18 h. At the concentrations used in this study, none of the agents significantly altered cell count compared with the control group. The level of cytotoxicity in the imipenem group was lower at 12 hand 18 h than their respective controls. In contrast, the level of cytotoxicity in cultures treated with trimethoprim/sulfamethoxazole, norfloxacin, and amikacin was increased. The strains were also examined for the release of Shiga toxins 1 and 2 following treatment with the agents, which were measured by the reversed passive latex agglutination (RPLA) method. The RPLA assay showed a suppression of release of Shiga toxin 2 in the strain cultures containing imipenem. These results indicate that imipenem may be a safe and effective agent for inhibition of these bacteria, which has clinical implications for the treatment of EHEC infections.

Prevalence and Characterization of Enterohemorrhagic Escherichia coli (EHEC) Isolated from Ground Beefs Distributed in Gyeong-In Region (경인지역에 유통되는 분쇄육 중 장출혈성대장균의 분포 조사 및 특성 연구)

  • Kim, Eun-Jeong;Park, Yong-Chjun;Cho, Joon-Il;Lee, Jong-Ok;Kim, Hee-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.773-778
    • /
    • 2006
  • The objective of this study was to evaluate three verocytotoxin-producing Escherichia coli (VTEC) detection kits to detect the presence of VT genes: Doupath Verocytotoxin (GLISA) developed by MERCK, ProsPect Shiga Toxin E. coil (STEC) Microplate Assay (ELISA) developed by Remel, and a polymerase chain reaction method. Our laboratory verified artificially inoculated samples. All three methods could detect very low numbers of VTEC, but VT-PCR had the best sensitivity for VTEC detection. From April through September 2005, 257 ground-beefs from supermakets and traditional markets were examined for the presence of VTEC by polymerase chain reaction immediately after purchase and total viable counts (TVC) were determined. VTEC was isolated from 30 of 257 ground-beefs. A variety of serogroups was found, including 10 stains belonging to the virulence type EHEC, but major serogroups such as O157, O26 and O111 were nor found.