DOI QR코드

DOI QR Code

Predictive model and quantitative microbial risk assessment of enterohemorrhagic Escherichia coli and Campylobacter jejuni in milk

우유에서 장출혈성 대장균과 캠필로박터균의 행동예측 모델 개발 및 정량적 미생물 위해성 평가 연구

  • Dong, Jiaming (Department of Food and Nutrition, Kyung Hee University) ;
  • Min, Kyung Jin (Department of Food and Nutrition, Jangan University) ;
  • Seo, Kun Ho (KU Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Yoon, Ki Sun (Department of Food and Nutrition, Kyung Hee University)
  • 동쟈밍 (경희대학교 식품영양학과) ;
  • 민경진 (장안대학교 식품영양학과) ;
  • 서건호 (건국대학교 수의과학과) ;
  • 윤기선 (경희대학교 식품영양학과)
  • Received : 2021.08.20
  • Accepted : 2021.09.26
  • Published : 2021.10.31

Abstract

We prepared the growth and survival models of enterohemorrhagic Escherichia coli (EHEC) and Campylobacter jejuni in milk as a function of temperature and assessed the microbiological risks associated with the consumption of whole milk. EHEC and C. jejuni were not detected in whole milk (n=195) in the retail market. The minimum growth temperature of EHEC in milk was 7℃. The lag time of EHEC in whole milk was longer than that in skim milk. The survival ability of C. jejuni in milk was better at 4℃ than at 10℃. Lower delta values were observed in whole milk than in skim milk, indicating that C. jejuni survived better in skim milk. The probability of foodborne illness from whole milk consumption was 5.70×10-5 for EHEC and 9.86×10-9 for C. jejuni. Sensitivity analysis results show that the market temperature of EHEC and the dose-response model of C. jejuni are correlated with the probability of foodborne illness.

본 연구는 일반우유와 무지방우유에서 장출혈성 대장균과 캠필로박터 제주니의 행동예측모델을 개발하고, 미생물학적 안전관리를 위한 기준의 적절성 평가를 위해 정량적 위해성평가를 수행하였다. 시중 마트에서 유통 판매되고 있는 일반우유(n=195)에서 장출혈성 대장균과 캠필로박터 제주니의 오염실태를 모니터링한 결과 모든 제품에서 장출혈성 대장균과 캠필로박터 제주니는 검출되지 않아 초기 오염도는 각각 -3.94 log CFU/mL로 동일하게 추정되었다. 장출혈성 대장균은 7℃ 이상의 온도에서 성장하였고, 캠필로박터 제주니는 4-25℃ 온도의 우유에서 사멸하였다. 우유에서 1차 모델에서 얻은 parameter를 사용하여 장 출혈성 대장균은 2차 성장모델을 캠필로박터 제주니는 2차 사멸예측모델을 개발하였다. 일반우유의 섭취패턴은 식품의약품안전처(2015) 연구에서 수행한 "50대 주요 축산식품의 섭취량 및 섭취패턴조사" 결과를 바탕으로 @RISK 프로그램을 활용하여 하루에 일반우유의 1회 섭취를 통하여 장출혈성 대장균과 캠필로박터 제주니에 의한 식중독 발생 확률을 추정하였다. 추정 결과 1일 1회 일반우유 섭취로 장출혈성 대장균과 캠필로박터 제주니로 인한 평균 식중독 발생 확률은 각각 5.70×10-5, 9.86×10-9 것으로 확인되었다. 본 연구에서 정량적 위해평가를 통해 일반우유에서 장출혈성 대장균과 캠필로박터 제주니의 위해수준을 산출한 결과 일반우유에서 장출혈성 대장균의 식중독 발생 가능성이 상대적으로 높으므로 우선관리 대상임을 알 수 있었고, 우유제조업체에서 교차오염 방지, 살균온도/시간 관리, 유통온도, 가정에서 온도 관리 등이 매우 중요할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 2020년도 식품의약품안전처 용역연구개발과제의 연구개발비 지원(20162위생안027)에 의해 수행되었으며 이에 감사드립니다.

References

  1. Altekruse SF, Stern NJ, Fields PI, Swerdlow DL. Campylobacter jejuni-an emerging foodborne pathogen. Emerg. Infect. Dis. 5: 28-35 (1999) https://doi.org/10.3201/eid0501.990104
  2. Bahk GJ. Statistical probability analysis of storage temperatures of domestic refrigerator as a risk factor of foodborne illness outbreak. Korean J. Food Sci. Technol. 42: 373-376 (2010)
  3. Baranyi J, Ross T, Roberts TA, MeMeekin TA. Effects of parameterization on the performance of empirical models used in 'predictive microbiology. Food Microbiol. 13: 83-91 (1996) https://doi.org/10.1006/fmic.1996.0011
  4. Burnette CN, Yoon KS. Comparison of growth and survival kinetics of Salmonella Typhimurium and Campylobacter jejuni on cooked chicken breast stored under aerobic conditions various temperatures. Food Sci. Biotechnol. 13:796-800 (2004)
  5. Centers for Disease Control and Prevention. How many outbreaks are related to raw milk? Available at: http://www.cdc.gov/foodsafety/rawmilk/raw-milk-questions-and-answers.html#related-outbreaks. Accessed Sept. 22, 2021
  6. Davey KR. A predictive model for combined temperature and water activity on microbial growth during the growth phase. J. Bacteriol. 67: 483-488 (1989)
  7. Dean-Nystrom EA, Gansheroff LJ, Mills M, Moon HW, O'Brien AD. Vaccination of pregnant dams with intiminO157 protects suckling piglets from Escherichia coli O157: H7 infection. Infect. Immun. 70: 2414-2418 (2002) https://doi.org/10.1128/iai.70.5.2414-2418.2002
  8. Dhaka P, Vijay D, Vergis J, Negi M, Kumar M, Mohan V, Doijad S, Poharkar KV, Malik SS, Barbuddhe SB, Rawool DB. Genetic diversity and antibiogram profile of diarrhoeagenic Escherichia coli pathotypes isolated from human, animal, foods and associated environmental sources. Infect. Ecol. Epidemiol. 6: 31055 (2016) https://doi.org/10.3402/iee.v6.31055
  9. El-Zamkan MA, Hameed KGA. Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products. Vet. World. 9: 1147-1151 (2016) https://doi.org/10.14202/vetworld.2016.1147-1151
  10. Esan OB, Pearce M, van Hecke O, Roberts N, Collins DR, Violato M, McCarthy N, Perera R, Fanshawe TR. Factors associated with sequelae of Campylobacter and non-typhoidal Salmonella infections: a systematic review. EBioMedicine. 15:100-111 (2017) https://doi.org/10.1016/j.ebiom.2016.12.006
  11. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA & ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal 16: 5500 (2018)
  12. Fusco V, Chieffi D, Fanelli F, Logrieco AF, Cho GS, Kabisch J, Bohnlein C, Franz, C. M. Microbial quality and safety of milk and milk products in the 21st century. Compr. Rev. Food Sci. F. 19: 2013-2049 (2020) https://doi.org/10.1111/1541-4337.12568
  13. Geeraerd AH, Valdramidis VP, Van Impe JF. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International J. Food Microbiol. 102: 95-105 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.11.038
  14. Giacometti F, Serraino A, Bonilauri P, Ostanello F, Daminelli P, Finazzi G, Losio MN, Marchetti G, Liuzzo G, Zanoni RG, Rosmini R. Quantitative risk assessment of verocytotoxin-producing Escherichia coli O157 and Campylobacter jejuni related to consumption of raw milk in a province in Northern Italy. J. Food Prot. 75: 2031-2038 (2012) https://doi.org/10.4315/0362-028X.JFP-12-163
  15. Gibson AM, Bratchell N, Roberts TA. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J. Appl. Bacteriol. 62: 479-490 (1987) https://doi.org/10.1111/j.1365-2672.1987.tb02680.x
  16. Ha J, Lee J. Quantitative risk assessment of Listeria monocytogenes foodborne illness caused by consumption of cheese. J. Food Hyg. Saf. 35: 552-560 (2020) https://doi.org/10.13103/JFHS.2020.35.6.552
  17. Haas CN. Estimation of risk due to low doses of microorganisms: a comparison of alternative methodologies. Am. J. Epidemiol. 118: 573-582 (1983) https://doi.org/10.1093/oxfordjournals.aje.a113662
  18. Haas CN, Rose JB, Gerba CP. Quantitative microbial risk assessment. John Wiley & Sons, Inc. (1999)
  19. Havelaar AH, van Koningsveld R, van Kempen E. Health burden in the Netherlands due to infection with thermophilic Campylobacter spp. Epidemiol. Infect. 125: 505-522 (2000) https://doi.org/10.1017/S0950268800004933
  20. Hong SH, Kim HS, Yoon KS. Survival and risk comparison of Campylobacter jejuni on various processed meat products. Int. J. Environ. Res. Public Health. 13: 580-594 (2016) https://doi.org/10.3390/ijerph13060580
  21. Huertas E, Salgot M, Hollender J,Weber S, Dott W, Khan S, Schafer A, Messalem R, Bis B, Aharoni A, Chikurel H. Key objectives for water reuse concepts. Desalination. 218: 120-131(2008) https://doi.org/10.1016/j.desal.2006.09.032
  22. Jung H. Consumer survey and hazard analysis for the improvement of food hygiene and safety in purchase. MD thesis, Korea Univ., Seoul, Korea (2011)
  23. Kim K, Lee H, Lee S, Kim S, Lee J, Ha J, Yoon Y. Microbial risk assessment of non-enterohemorrhagic Escherichia coli in natural and processed cheeses in Korea. Korean J. Food Sci. 37: 579-592 (2017) https://doi.org/10.5851/kosfa.2017.37.4.579
  24. Kim J, Ro E, Yoon KS. Comparison of growth kinetics of various pathogenic E. coli on fresh perilla leaf. Foods 2: 364-373 (2013) https://doi.org/10.3390/foods2030364
  25. Lawrence GD. Dietary fats and health: dietary recommendations in the context of scientific evidence. J. Am. Coll. Nutr. 4: 294-302 (2013)
  26. Lim JY, Jo HY, Lee CL, Kim GH, Lee JY, Seo HO, Yoon KS. Risk assessment of Listeria monocytogenes in natural cheese. Safe food 15: 11-19 (2020).
  27. Medema GJ, Teunis PFM, Havelaar AH, Haas CN. Assessment of the dose-response relationship of Campylobacter jejuni. Int. J. Food Microbiol. 30: 101-111 (1996) https://doi.org/10.1016/0168-1605(96)00994-4
  28. McMeekin TA, Olley J, Ross T, Ratkowsky DA. Predictive microbiology: theory and application. John Wiley & Sons Ltd. Taunton, UK. pp. 340 (1993)
  29. Ministry of Agriculture, Food and Rural Affairs (MAFRA). Agriculture, food and rural affairs statistics. Available from: https://www.mafra.go.kr/mafra/360/subview.do Accessed Nov. 20, 2020
  30. Park JH, Cho JI, Joo IS, Heo JJ, KS Yoon, Estimation of amount and frequency of consumption of 50 domestic livestock and processed livestock products. J. Korean Soc. Food Sci. Nutr. 45: 1177-1191 (2015) https://doi.org/10.3746/JKFN.2016.45.8.1177
  31. Ministry of Food and Drug Safety (MFDS). Food hygiene in the home for consumer awareness survey. pp. 67-68 (2009)
  32. Ministry of Food and Drug Safety (MFDS). Korea Food Code. Available from: https://www.foodsafetykorea.go.kr/foodcode/01_03.jsp?idx=63. Accessed April. 30, 2020.
  33. Ministry of Food and Drug Safety (MFDS). Foodborne disease outbreak. Available from: https://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=3724&menu_grp=MENU_NEW02 Accessed Feb. 28, 2021
  34. Ministry of Food and Drug Safety (MFDS). Guidelines for Preparation of Risk Assessment Report.Available from: https://www.mfds.go.kr/brd/m_231/view.do?seq=20205&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=3, Accessed Jun. 16, 2015
  35. Ministry of Health and Welfare, Republic of Korea (MOHW). Dietary Reference Intakes for Koreans 2020. Available from: http://www.mohw.go.kr/upload/viewer/skin/doc.html?fn=1608684513121_20201223092638.pdf&rs=/upload/viewer/result/202103/ Accessed Dec. 23, 2020
  36. Momtaz H, Dehkordi FS, Rahimi E, Ezadi H, Arab R. Incidence of Shiga toxin-producing Escherichia coli serogroups in ruminant's meat. Meat Sci. 95: 381-388 (2013) https://doi.org/10.1016/j.meatsci.2013.04.051
  37. Nauta MJ, Jacobs?Reitsma WF, Havelaar AH. A risk assessment model for Campylobacter in broiler meat. Risk Anal. 27: 845-861 (2007) https://doi.org/10.1111/j.1539-6924.2006.00834.x
  38. Oscar TP. Development and validation of primary, secondary, and tertiary models for growth of Salmonella Typhimurium on sterile chicken. J. Food Prot. 68: 2606-2613 (2005) https://doi.org/10.4315/0362-028X-68.12.2606
  39. Ratkowsky DA, Olley J, McMeekin TA, Ball A. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149: 1-5 (1982) https://doi.org/10.1128/jb.149.1.1-5.1982
  40. Ross T. Indices for performance evaluation of predictive model in food microbiology. J. Appl. Bacteriol. 81: 201-508 (1996) https://doi.org/10.1111/j.1365-2672.1996.tb04501.x
  41. Sanaa M, Coroller L, Cerf O. Risk assessment of listeriosis linked to the consumption of two soft cheeses made from raw milk: Camembert of Normandy and Brie of Meaux. Risk Anal. 24: 389-399 (2004) https://doi.org/10.1111/j.0272-4332.2004.00440.x
  42. Skirrow MB. Clinical aspects of Campylobacter infection. J. Campylobacter. 69-88 (2000)
  43. Sprong RC, Hulstein MF, Van der Meer R. Bactericidal activities of milk lipids. Antimicrob. Agents Chemother. 45: 1298-1301 (2001) https://doi.org/10.1128/AAC.45.4.1298-1301.2001
  44. Sprong RC, Hulstein MFE, Van der Meer R. Bovine milk fat components inhibit food-borne pathogens. Int. Dairy J. 12: 209-215 (2002) https://doi.org/10.1016/S0958-6946(01)00139-X
  45. Ten Bruggencate SJ, Frederiksen PD, Pedersen SM, Floris-Vollenbroek EG, Lucas-van de Bos E, van Hoffen E, Wejse PL. Dietary milk-fat-globule membrane affects resistance to diarrheagenic Escherichia coli in healthy adults in a randomized, placebo-controlled, double-blind study. J. Nutr. 146: 249-255 (2016) https://doi.org/10.3945/jn.115.214098
  46. Tiwari U, Cummins E, Valero A, Walsh D, Dalmasso M, Jordan K, Duffy G. Farm to fork quantitative risk assessment of Listeria monocytogenes contamination in raw and pasteurized milk cheese in Ireland. Risk Anal. 35: 1140-1153 (2015) https://doi.org/10.1111/risa.12332
  47. Vose DJ. The application of quantitative risk assessment to microbial food safety. J. Food Prot. 61: 640-648 (1998) https://doi.org/10.4315/0362-028X-61.5.640
  48. Wang Q, Ruan X, Wei D, Hu Z, Wu L, Yu T, Wang L. Development of a serogroup-specific multiplex PCR assay to detect a set of Escherichia coli serogroups based on the identification of their O-antigen gene clusters. J. Mol. Cell. Probes. 24: 86-290 (2010)
  49. Wemmenhove E. Risk assessment of Listeria monocytogenes in gouda cheese. Dissertation, Wageningen University. Wageningen, Gelderland, Netherlands (2019)