• Title/Summary/Keyword: EHD jet(electrohydrodynamic)

Search Result 11, Processing Time 0.035 seconds

Electrohydrodynamic Continuous Jet Printing of Ni Ink for Crystalline Silicon Solar Cells (전기 수력학 인쇄공정을 이용한 실리콘 태양전지 전극용 Ni 잉크 제조 및 인쇄 공정 연구)

  • Lee, Youngwoo;Kim, Jihoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.593-597
    • /
    • 2015
  • Ni ink for electrohydrodynamic (EHD) continuous jet printing has been developed by using Ni nanoparticles mixed with conhesiveness provider. EHD continuous jet printing was used in order to realize $20{\mu}m$ pattern width. Ink stability was investigated by using Turbi-scan which monitors agglomeration and precipitation of nanoparticles in the ink for three days. The Turbi-scan results showed that the formulated Ni ink had been stable for 3 days without any indication of precipitation across the entire ink. Antireflection coating (ARC) layer in crystalline solar cell wafers was removed by laser ablation technique leading to the formation of 84 grooves where the Ni ink was printed by EHD continuous jet printing. The printability and microstructure of EHD-jet-printed Ni lines were investigated by using optical and electron microscopes. 84 Ni lines with the width less than $20{\mu}m$ were successfully printed by one-time printing without any misalignment and fill the laser-ablated ARC grooves.

On-demand electrohydrodynamic printing with meniscus controls by a piezoelectric actuator (압전 액츄에이터의 메니스커스 제어를 통한 온 디멘드(On-demand) 전기 수력학 프린팅)

  • Kim, Y.J.;Kim, D.H.;Hwang, J.H.;Kim, Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2009.06a
    • /
    • pp.351-352
    • /
    • 2009
  • On-demand ejection of ultra-fine droplets that uses both electrohydrodynamic (EHD) force and mechanical actuation is presented. The liquid meniscus was controlled by a piezoelectric actuator and droplets were ejected by EHD force. Through these effects, it was possible to obtain a high operational jetting frequency of 5kHz with a short delay-time (about 50 us) when compared with existing on-demand EHD jetting methods, such as the pulsating jet mode (3-10 msec) and the pulsed-voltage cone-jet mode(3.6 msec). Also, we obtained ultra-fine droplets at a volume that was at the femto-liter level simultaneously. The jetting characteristics were examined for both hydrophobicity and hydrophilicity of the surface of a capillary.

  • PDF

Comparative Study on Ejection Phenomena of Droplets from EHD Jet by Hydrophobic Coating of Nozzle (노즐의 소수성 코팅에 의한 EHD 제트의 액적 토출 현상 비교 연구)

  • Kim, Yong-Jae;Choi, Jae-Yong;Son, Sang-Uk;Ahn, Ki-Cheol;Keum, Hyun-Joon;Lee, Suk-Han;Byun, Do-Young;Ko, Han-Seo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1742-1746
    • /
    • 2008
  • An EHD (Electro-Hydro-Dynamic) jet for electrostatic inkjet head shows advantages to print micro-size patterns using various inks because it can generate sub-micron droplets and can use highly viscous inks. Thus, many researchers in industrial fields are concerned about the EHD jet in these days. Since the basic principle of the EHD jet is to form a droplet from an apex of meniscus at the end of the nozzle, the ejection mechanism can be changed by the shape of the meniscus. The stable ejection of the droplet is greatly affected by the shape of the meniscus which is also influenced by surface characteristics of the nozzle, electric potential and ink properties. Experiments have been performed using the nozzles with hydrophilic and hydrophobic coatings in this study. The hydrophobic nozzle forms the stable droplets in wider range of the electric potential than the hydrophilic nozzle does.

  • PDF

Electrohydrodynamic Ink Jetting Monitoring based on Current Measurement (전류 측정을 이용한 수력학적 잉크젯 토출 모니터링)

  • Kwon, Kye-Si;Lee, Dae-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.449-454
    • /
    • 2012
  • The method for spraying of liquid through an electrical filed has become a printing method since it can make very small droplet. To increase the reliability using the electro-hydrodynamic (EHD) jet printing, the jetting status needs to be monitored. Vision measurement techniques using high speed camera has been used to visualize the jet images. However, it requires image processing of a lot of images after image acquisitions. So, it is difficult to understand jet behavior such as jetting frequency, jet repeatability etc. In this work, a low cost electrical current measurement method was developed to measure electrical current from EHD jet printing. To verify the jetting monitoring capability of developed circuit, images from high speed camera were processed for comparison purpose.

Electrohydrodynamic Inkjet Printing System for Ultrafine Patterning (초정밀 미세 패턴을 위한 전기 수력학 잉크젯 프린팅 시스템)

  • Roh, Hyeong-Rae;Go, Jung-Kook;Kwon, Kye-Si
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.873-877
    • /
    • 2013
  • The application of inkjet technology has been broadening from home printers to manufacturing tools. Recently, there have been demands for high-resolution printing, especially in the field of printed electronics applications. To improve upon the conventional inkjet printing patterning method, electrohydrodynamic (EHD) inkjet technology has recently attracted attention because droplets smaller than the nozzle diameter can be ejected and materials with wider viscosity range can be used for jetting. In this study, an EHD jet printing system for fine patterning is presented. To print various patterns based on drop on demand printing, vector and raster printing algorithm are implanted in the printing software. Fine conductive patterns with line width of less than $7{\mu}m$ can be easily achieved via EHD jet using a nozzle with inner diameter of $8{\mu}m$.

Electrohydrodynamic Drop Formation Processes of a Needle-Centered Nozzle Electrode (침심 노즐전극의 전기 유체역학적 액적 형성과정)

  • Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1807-1811
    • /
    • 2008
  • In this paper, the meniscus formation/deformation processes and conduction characteristics of the needle-centered ceramic nozzle electrode as an effective electrohydrodynamic (EHD) flow driving mechanisms for de-ionized water and silicone oil have been investigated. Results showed that the applied high voltage affected significantly on the processes, such as the drop formation mode, the deformation mode, the dripping mode, the jet mode, and the atomization mode. There was the EHD atomization mode for the de-ionized water while it was not occurred for the silicone oil, which, however, might be due to the lower electric conductivity and dielectric property of the oil than that of the water.

Enhanced Electrochemical Reactivity at Electrolyte/electrode Interfaces of Solid Oxide Fuel Cells with Ag Grids

  • Choi, Mingi;Hwang, Sangyeon;Byun, Doyoung;Lee, Wonyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.356-360
    • /
    • 2015
  • The specific role of current collectors was investigated at the electrolyte/electrode interface of solid oxide fuel cells (SOFCs). Ag grids were fabricated as current collectors using electrohydrodynamic (EHD) jet printing for precise control of the grid geometry. The Ag grids reduced both the ohmic and polarization resistances as the pitch of the Ag grids decreased from $400{\mu}m$ to $100{\mu}m$. The effective electron distribution along the Ag grids improved the charge transport and transfer at the interface, extending the active reaction sites. Our results demonstrate the applicability of EHD jet printing to the fabrication of efficient current collectors for performance enhancement of SOFCs.

The Experimental Study of EHD Printing for Different Nozzle Shapes (노즐 형상에 따른 전기수력학 프린팅의 실험적 연구)

  • Kim, Ji-Young;Nguyen, Vu Dat;Byun, Do-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.48-53
    • /
    • 2011
  • The shape of nozzle cross-section plays an important role in stabilizing electrospray jet. The angle of contact line is governed based on the famous Young-Laplace equation. Compared to a round nozzle that has a constant curvature along the orifice, the square nozzle has four square corner edges and four straight edges that hold the meniscus in a different manner and is of interest in this study. By utilizing both square and round capillary nozzle, we examine the effect of nozzle shape in electrohydrodynamic jetting. The ejections were recorded with a high speed camera and analyzed to examine the jetting repeatability based on dynamic movement of meniscus. The result suggests that if the corner edges are not sharp, then its effect on repeatability is also limited.

High Speed and Continuous Electrospinning Printing Using Polymer Ink (고분자 폴리머 잉크를 이용한 고속 연속 전기 방사 프린팅)

  • Zhang, Da-Hai;Kwon, Kye-Si
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.379-384
    • /
    • 2015
  • Electrospinning has recently been used for micropatterning. The electrospinning method as a patterning tool has the advantage of a rapid patterning speed because it is based on a continuous printing mode rather than a drop-on-demand mode. To obtain stable continuous printing, a high molecular weight polymer must be mixed with functional materials for patterning. In this paper, polyethylene oxide (PEO) was used. The effect of polymer on viscosity and formation of a Taylor cone jet from the electrospinning nozzle was investigated. Finally, the electrospinning patterning results of a silver paste ink on a glass substrate were investigated.