• Title/Summary/Keyword: EGR2

Search Result 192, Processing Time 0.026 seconds

Case Study on Engine Trouble analysis and Diagnosis Using MDA (MDA를 이용한 엔진 가속 불량 진단에 관한 연구)

  • Hwang, Sung-Wan;Cha, Suk-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.105-109
    • /
    • 2022
  • In this study, the cause of the acceleration failure of Hyundai Motor's 2.0-liter CRDi engine was analyzed. We tried to find problems through MDA (Measuring Data Analyzer) based on data such as vehicle speed, air intake, and air-fuel ratio obtained during the actual driving process. As a result, it was analyzed that the failure of the EGR valve exceeded the NOx emission standard and caused a decrease in engine output. Through this study, it is possible to reduce the time and cost of unnecessary maintenance and repair, and it is expected that a rapid cause analysis will be possible in the case of new failure diagnosis in the future.

Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control (EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교)

  • Lee, Yong-Gyu;Jang, Jae-Hoon;Lee, Sun-Youp;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.

Effect of Intake Pressure on Emissions and Performance in Low Temperature Combustion Operation of a Diesel Engine (디젤 저온연소 운전 영역에서 흡기압이 엔진 성능에 주는 영향)

  • Lee, Sun-Youp;Chang, Jae-Hoon;Lee, Yong-Gyu;Oh, Seung-Mook;Kim, Yong-Rae;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • One of the effective ways to reduce both $NO_x$ and PM at the same time in a diesel CI engine is to operate the engine in low temperature combustion (LTC) regimes. In general, two strategies are used to realize the LTC operation-dilution controlled LTC and late injection LTC - and in this study, the former approach was used. In the dilution controlled regime, LTC is achieved by supplying a large amount of EGR to the cylinder. The significant EGR gas increases the heat capacity of in-cylinder charge mixture while decreasing oxygen concentration of the charge, activating low temperature oxidation reaction and lowering PM and $NO_x$ emissions. However, use of high EGR levels also deteriorates combustion efficiency and engine power output. Therefore, it is widely considered to use increased intake pressure as a way to resolve this issue. In this study, the effects of intake pressure variations on performance and emission characteristics of a single cylinder diesel engine operated in LTC regimes were examined. LTC operation was achieved in less than 8% $O_2$ concentration and thus a simultaneous reduction of both PM and $NO_x$ emission was confirmed. As intake pressure increased, combustion efficiency was improved so that THC and CO emissions were decreased. A shift of the peak Soot location was also observed to lower $O_2$ concentration while $NO_x$ levels were kept nearly zero. In addition, an elevation of intake pressure enhanced engine power output as well as indicated thermal efficiency in LTC regimes. All these results suggested that LTC operation range can be extended and emissions can be further reduced by adjusting intake pressure.

The Emission Characteristics of Bio-Diesel Fuel in Heavy-Duty Engine (바이오 디젤 적용에 따른 대형엔진의 배출가스 특성)

  • Kim, Sun-Moon;Eom, Myoung-Do;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.499-506
    • /
    • 2010
  • Recently, a great deal of attention have been directed to the use of alternative fuels as a means to reduce vehicular emissions. As one of the promising alternative fuels, bio-diesel has advantages of a wide adaptability without retrofit of diesel engine. It is also effective enough to reduce CO, THC, $SO_x$, polycyclic aromatic hydrocarbons (PAHs) and PM. In this study, we investigated the emission characteristics of biofuels between different operating conditions, i.e., engine speed (1,400 rpm and 2,300 rpm), engine load (10% and 100%), bio-diesel blending (BD0, BD5 and BD20), and recirculation (EGR) rate of exhaust gas (0% and 20%). Relative performance of the system was evaluated mainly for the greenhouse gases ($CH_4$, $N_2O$ and $CO_2$). In addition, emission characteristics of ND-13 mode were also tested against both greenhouse gases and other airborne pollutants under emission regulation. The relative composition of bio-diesel has shown fairly clear effects on the emission quantities of CO, THC, and PM emission, although it was not on $NO_x$ and greenhouse gases. EGR rate has shown trade-off characteristics between $NO_x$ and PM.

The Characteristics of Biodiesel Fuel as an Alternative Fuel of an Agricultural Diesel Engine (농업용 디젤기관의 대체연료로서 바이오디젤유의 특성)

  • Choi S. H.;Oh Y.T.;Lee C.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.115-120
    • /
    • 2006
  • Our environment is faced with serious problems related to the air pollution from diesel engines in these days. In particular, the exhaust emissions of agricultural diesel engines are recognized main cause which influenced environment strongly. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated agricultural D.I. diesel engine. The smoke emission of biodiesel fuel was reduced remarkably in comparison with diesel fuel, that is, it was reduced approximately 50% at 2500 rpm, full load. But, power, torque and brake specific energy consumption didn't have large differences. But, NOx emission of biodiesel fuel was increased compared with commercial diesel fuel. Also, the effects of exhaust gas recirculation (EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with biodiesel fuel (20vol-%) and cooled EGR method($5{\sim}15%$) in an agricultural D.I. diesel engine.

Effect of Nitrogen and Carbon Dioxide on DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축착화 엔진에서 질소와 이산화탄소의 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.171-178
    • /
    • 2008
  • The combustion and exhaust emission characteristics were investigated in an DME fueled HCCI engine. Carbon dioxide, nitrogen and mixed gas, which was composed of carbon dioxide and nitrogen, were used as control parameters of combustion and exhaust emission. As the oxygen concentration in induction air, which was occurred by carbon dioxide, nitrogen and mixed gas, was reduced, the start of auto-ignition was retarded and the burn duration was extended due to obstruction of combustion and reduction of combustion temperature. Due to these fact, indicated mean effective pressure was increased and indicated combustion efficiency was decreased by carbon dioxide, nitrogen and mixed gas. In case of exhaust emission, hydrocarbon and carbon monoxide was increased by reduction of oxygen concentration in induction air. Especially, partial burning was appeared at lower than about 18% of oxygen concentration by supplying carbon dioxide. However it was overcome by intake air heating.

Gene Expression Profiling in the Striatum of Per2 KO Mice Exhibiting More Vulnerable Responses against Methamphetamine

  • Kim, Mikyung;Jeon, Se Jin;Custodio, Raly James;Lee, Hyun Jun;Sayson, Leandro Val;Ortiz, Darlene Mae D.;Cheong, Jae Hoon;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • Drug addiction influences most communities directly or indirectly. Increasing studies have reported the relationship between circadian-related genes and drug addiction. Per2 disrupted mice exhibited more vulnerable behavioral responses against some drugs including methamphetamine (METH). However, its roles and mechanisms are still not clear. Transcriptional profiling analysis in Per2 knockout (KO) mice may provide a valuable tool to identify potential genetic involvement and pathways in enhanced behavioral responses against drugs. To explore the potential genetic involvement, we examined common differentially expressed genes (DEGs) in the striatum of drug naïve Per2 KO/wild-type (WT) mice, and before/after METH treatment in Per2 KO mice, but not in WT mice. We selected 9 common DEGs (Ncald, Cpa6, Pklr, Ttc29, Cbr2, Egr2, Prg4, Lcn2, and Camsap2) based on literature research. Among the common DEGs, Ncald, Cpa6, Pklr, and Ttc29 showed higher expression levels in drug naïve Per2 KO mice than in WT mice, while they were downregulated in Per2 KO mice after METH treatment. In contrast, Cbr2, Egr2, Prg4, Lcn2, and Camsap2 exhibited lower expression levels in drug naïve Per2 KO mice than in WT mice, while they were upregulated after METH treatment in Per2 KO mice. qRT-PCR analyses validated the expression patterns of 9 target genes before/after METH treatment in Per2 KO and WT mice. Although further research is required to deeply understand the relationship and roles of the 9 target genes in drug addiction, the findings from the present study indicate that the target genes might play important roles in drug addiction.

Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.

Combustion and Exhaust Emission Characteristics of DME in a Common-rail Diesel Engine (커먼레일 디젤엔진에서 DME의 연소 및 배기 특성)

  • An, Sang-Gyu;Kim, Myung-Yoon;Yoon, Seung-Hyun;Lee, Je-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.74-80
    • /
    • 2007
  • An experiment was conducted with a common-rail direct injection diesel engine operated with neat dimethyl ether (DME). In order to investigate the effect of combustion characteristics and emission reduction of DME fuel, the experiment was performed at various injection pressure from 35 MPa to 50MPa. Also, the exhaust emissions from the engine were compared with that of diesel fuel. In this work, Cooled EGR was implemented to reduce $NO_x$ exhaust emissions. The results showed that DME has shorter ignition delay than that of diesel fuel. Despite of the increased $NO_x$ emissions with DME at an equal engine power compared to the case of fueling diesel, the engine emitted zero soot emissions all over the operating conditions in this work. $NO_x$ emission can be decreased greatly by adopting 45% of EGR while maintaining zero soot emission. Judging from the result of engine test, DME is a suitable fuel for common-rail diesel engine due to it's clean emission characteristics.