• 제목/요약/키워드: EGR ratio

검색결과 103건 처리시간 0.023초

Scrubber를 장착한 EGR 시스템이 디젤기관의 성능특성에 미치는 영향 (Effects on Performance Characteristics of Diesel Engine by EGR system with Scrubber)

  • 임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.184-191
    • /
    • 1999
  • Th effects of exhaust gas recirculation(EGR) on the characteristics of combustion exhaust emissions and specific fuel consumption(SFC) are experimentally investigated by four-cylin-der four-cycle and direct injection marine diesel engine. In order to reduce soot contents in the recirculated exhaust gas to intake system of the engines a novel diesel soot removal system with a cylinder-type scrubber which has water injector(4 nozzles in 1.0mm diameter)is specially designed and manufactured for the experi-mental system. The obtained results are as follows; The combustion pressure in cylinder is decreased and ignition is delayed with increasing EGR rate. The accumulated quantity of heat release is slightly decreased and the tendency of heat release rate is not constant. NOx and Soot emissions are decreased by maximum 7% and 540% with scrubber tan without scrubber in the range of experimental conditions. Those are increased at the lean burn area with increasing equivalence ration in the constant value of engine speed and EGR rate. Also those are decreased with increasing EGR rate in the constant value of engine speed and equivalence ratio.

  • PDF

2단 터보과급기 장착 승용디젤엔진에서 EGR 배열 방식이 EGR율에 미치는 영향에 대한 시뮬레이션 (Simulation of the Effect of EGR Configuration on EGR Rate in a Passenger Diesel Engine with Two-Stage Turbocharger)

  • 정진은;노호종;정재우
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4137-4144
    • /
    • 2010
  • 본 논문에서는 승용디젤엔진에서 유해배출물을 저감시키는 동시에 고연비를 달성하기 위하여 2단 터보과급기와 EGR 장치를 장착한 디젤엔진에 대하여 EGR 배열 방식이 EGR율에 미치는 영향을 분석하기 위하여 시뮬레이션을 수행하였다. 이를 위하여 AMESim을 사용하였고 엔진 부품을 위하여 IFP Engine Library를 사용하였다. 고압, 저압, 반저압의 3가지 배열 방식이 고려되었다. 일반적으로 많이 사용되는 고압 방식과 저압 방식의 EGR 배열이 공연비 21에서 각각 6.4%, 10.0%의 EGR율을 보인 반면, 두 방식의 혼합형인 반저압 EGR 배열 방식의 EGR율은 18.0%의 값을 보였다. 따라서 2단 터보과급기와 EGR 장치를 장착한 엔진 설계시 엔진 성능과 유해배출물 발생량의 관점에서 반저압 방식 EGR 시스템이 적절함을 보였다.

직접 분사식 디젤기관에서 Dimethoxy Methane과 Cooled EGR방법을 이용한 Smoke와 NOx의 동시저감 (Simultaneous Reduction of Smoke and NOx by Dimethoxy Methane and Cooled EGR Method in a DI Diesel Engine)

  • 최승훈;오영택;권규식
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.66-72
    • /
    • 2004
  • In this study, the effects of oxygen component in fuel and exhaust gas recirculation(EGR) method on the exhaust emissions has been investigated for a D.I. diesel engine. It was tested to estimate change of exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has five kinds of blending ratio. Dimethoxy methane(DMM) contains oxygen component 42.5% in itself, and it is a kind of effective oxygenated fuel for reduction of smoke emission. It was affirmed that smoke emission was decreased with increasing of DMM blending ratio. But, NOx emission was increased compared with commercial diesel fuel. It was needed a NOx reduction counterplan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with DMM blended fuel and cooled EGR method(1015%).

디젤기관의 배기 배출물에 미치는 스크러버형 EGR 시스템 재순환 배기의 영향에 관한 연구 (A Study on the Effect of Recirculated Exhaust Gas with Scrubber EGR System upon Exhaust Emissions in Diesel Engines)

  • 배명환;하정호
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1247-1254
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of $NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The simultaneous control of $NO_x$ and soot emissions in diesel engines is targeted in this study. The EGR system is used to reduce $NO_x$ emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate, and the exhaust oxygen concentration measured are used to analyse and discuss the influences of EGR rate on $NO_x$ and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions are decreased and soot emissions are increased owing to the drop of intake oxygen concentration and exhaust oxygen concentration, and the rise of equivalence ratio as the EGR rate rises.

Spiral 구조 EGR Cooler의 열유동 특성 평가 (Evaluation of Thermal Fluid Characteristics for EGR Cooler with Spiral Type)

  • 허형석;원종필;박경석
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.44-50
    • /
    • 2003
  • Cooled EGR is an effective method for the reduction of NOx from a diesel engine and an EGR Cooler is the key component of the system. High efficiency, low pressure loss and compactness are required for the EGR Cooler. To meet these requirements, new geometric tube must be developed. In this paper, a full size EGR cooler test bench has been developed to validate the CFD flow and heat transfer models. Fluid temperature and pressure drop measurements are provided. fillet temperature is $200^{\circ}C$ and $300^{\circ}C$, and flow rates vary from 0.008 kg/sec to 0.019 kg/sec. The gas flow and heat transfer in a single tube cooler have been studied using computational fluid dynamics(CFD). Analysis has been carried out in a single tube with a plain tube and six spirally enhanced tubes of varying pitch to depth ratio(p/e).

EGR 밸브 평가 장치 개발을 위한 EGR 장착 엔진 성능 및 배출 가스 특성 연구 (A Study on Exhaust Gas Characteristics and Engine Performance of EGR Valve Installed Engine for Development of EGR Valve Test System)

  • 나동하;고춘식;서형준;이창언
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.52-57
    • /
    • 2012
  • In this study, in order to understand contents and ranges of design for the EGR Valve test system for improving quality and performance of EGR Valve, engine performance and exhaust gas characteristic of 3L-class diesel engine was analyzed. Experimental operation of engine performance test was performed with 50% engine load and 20% and 100% opening ratio of EGR Valve. From test of performance and exhaust gas characteristic of engine, torque output of engine and temperature and pressure of inlet and outlet of EGR Valve were measured. As a result, for design of EGR Valve test system, input fluid flow of EGR Valve must be set the same amount with exhaust gas flow that was below of engine speed of 2,500 rpm, and temperature of inlet of EGR Valve must be set under about $510^{\circ}C$. And the difference of temperature between inlet and outlet of EGR Valve must be over than about $200^{\circ}C$. Exhaust gas of inlet and outlet of EGR Valve were under 1 bar that was not considerable, and the difference of pressure between inlet and outlet of EGR Valve were under 1 bar that could not effect on mechanical operation of EGR Valve.

SECFR 시스템의 차량적용을 위한 분무균일도향상에 관한 연구 (A Study for Improving Spray Uniformity of the SECFR System for Vehicle Applications)

  • 손정욱;우승철;김수겸;이기형
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.95-100
    • /
    • 2015
  • Lower recirculated gas temperature at EGR system reduces NOx and PM emissions. However, EGR Cooler can be polluted by PM generated from recirculated EGR gas, and it reduces cooling efficiency and the amount of EGR gas simultaneously. The SECFR(Steam EGR Cooler Fouling Remover) system which uses the evaporated washer fluid steam caused by high temperature of EGR gas was manufactured for removing fouling generated on the cooler surface. Since an injection pressure of wind shield washer fluid in the vehicle is approximately 0.5 bar, it is not enough to atomize the injected washer fluid. Thus, it is necessary to apply a method to atomize the washer fluid. In this study, the impinging plate was used to promote the atomization of spray washer fluid for the purpose of apply SECFR system to vehicles and measured the DAR(Droplet Area Ratio) and DUI(Droplet Uniformity Index) through the spray visualization.

승용디젤엔진 EGR 및 VGT 제어시스템의 동적특성을 고려한 Decoupler 설계 연구 (Dynamic Decoupler Design for EGR and VGT Systems in Passenger Car Diesel Engines)

  • 홍승우;박인석;손정원;선우명호
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.182-189
    • /
    • 2014
  • This paper proposes a decoupler design method to reduce interaction between exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems in passenger car diesel engines. The EGR valve and VGT vane are respectively used to control air-to-fuel ratio (AFR) of exhaust gas and intake pressure. A plant model for EGR and VGT systems is defined by a first order transfer function plus time-delay model, and the loop interaction between these systems is analyzed using a relative normalized gain array (RNGA) method. In order to deal with the loop interaction, a design method for simplified decoupler is applied to this study. Feedback control algorithms for AFR and intake pressure are composed of a compensator using PID control method and a prefilter. The proposed decoupler is evaluated through engine experiment, and the results successfully showed that the loop interaction between EGR and VGT systems can be reduced by using the proposed decoupler. Furthermore, it presents stable performance even off from the designed operating point.

승용디젤엔진의 공연비 제어 알고리즘을 위한 모델기반 게인 스케줄링 전략에 대한 연구 (Model-based Gain Scheduling Strategy for Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines)

  • 박인석;홍승우;선우명호
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.56-64
    • /
    • 2015
  • This study presents a model-based gain scheduling strategy for PI-based EGR controllers. The air-to-fuel ratio is used as an indirect measurement of the EGR rate. In order to cope with the nonlinearity and parameter varying characteristics of the EGR system, we proposed a static gain model of the EGR system using a new scheduling parameter. With the 810 steady-state measurements, the static gain model achieved 0.94 of R-squared value. Based on the static gain of the EGR system, the PI gains were robustly designed using quantitative feedback theory. Consequently, the gains of the PI controller are scheduled according to the static gain parameter of the EGR path in runtime. The proposed model-based gain scheduling strategy was validated through various operating conditions of engine experiments such as setpoint step responses and disturbance rejections.

다양한 연료의 EGR 성능개선에 관한 기초연구(Part I: 메탄/air 예혼합화염에서 RG의 첨가효과) (Fundamental Study on the Development of the EGR Efficiency (Part I: Effects of Reformer Gas Addition in $CH_4/air$ Premixed Flames))

  • 이창언;황철홍;탁영조
    • 한국가스학회지
    • /
    • 제11권3호
    • /
    • pp.33-39
    • /
    • 2007
  • [ $CH_4/air$ ] 예혼합화염에서 EGR 성능개선을 위한 RG의 첨가효과에 대한 수치적 연구가 수행되었다. 일반적으로 EGR은 화염온도 및 NOx 저감을 위해 사용되어지는 반면, RG는 연소속도와 같은 화염안정성 개선을 위해 사용되어질 수 있다. 본 연구는 이들 두 첨가제가 연소특성에 미치는 경쟁적인 효과에 초점이 맞추어졌다. 결론으로서, 적절한 EGR 및 RG 첨가율의 조절은 낮은 NOx 배출의 달성과 동시에 순수 $CH_4/air$ 예혼합화염과 동일한 화염 안정성을 얻을 수 있음을 확인하였다.

  • PDF