• Title/Summary/Keyword: EFFECT OF FIRE

Search Result 1,360, Processing Time 0.03 seconds

A Study on Fire Characteristics of Solid Combustible Materials Based on Real Scale Fire Test (실규모 실험에 의한 고체가연물의 화재특성 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.62-68
    • /
    • 2011
  • A series of fire tests involving realistic solid combustible materials was conducted to quantify the heat release rate and investigate the fire growth characteristics during the initial fire growth stage. For these tests, single/double wood cribs, urethane cushion having polypropylene covers and wood crib on nylon carpet with urethane carpet padding were used as a fuel source. The fire growth coefficient of the solid combustible materials was quantified and the fire growth characteristics were compared with the $t^2$ fire scenario. The mean effective heat of combustion was evaluated by the total mass loss of fuel and total energy release concept and examined the effect of the ventilation and fire condition. The present study provides the practical information on the fire growth characteristics of solid combustible material to design to a set of fire scenarios for the fire risk analysis.

ANALYSIS OF SMOKE SPREAD EFFECT DUE TO THE FIRE STRENGTH IN UNDERGROUND SUBWAY-STATION (대심도 역사의 화재강도에 따른 연기확산 영향 분석)

  • Jang, Yong-Jun;Koo, In-Hyuk;Kim, Hag-Beom;Kim, Jin-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.373-378
    • /
    • 2011
  • As the number of deeply-underground subway station(DUSS) increases, the safety measures for DUSS have been requested. In this research, Shingumho station (The line # 5, Depth: 46m) has been selected as case-study for the analysis of smoke-spread speed with the different fire strength. Field test data measured for actual fan in DUSS was applied as a condition of a simulation. The whole station was covered in this analysis and total of 4 million grids were generated for this simulation. The fire driven flow was analyzed case by case to compare the smoke-spread effect according to the fire strength. in order to enhance the efficiency of calculation, parallel processing by MPI was employed and large eddy simulation method in FDS code was adopted.

  • PDF

Development of Probabilistic Risk Analysis Model on Railroad System - Its Application to Tunnel Fire Risk Analysis (철도시스템의 확률론적 위험평가 모델 개발 연구 - 터널화재 위험도 평가에의 적용)

  • Kwak Sang Log;Wang Jong Bae;Hong Seon Ho;Kim Sang Am
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.265-270
    • /
    • 2003
  • Though the probability of tunnel fire accident is very low, but critical fatalities are expected when it occurred. In this study the effect of critical safety parameters on tunnel fire accident are examined using probabilistic technique. Fire detection time, smoke spread velocity, passenger escape velocity, flash-over time, and emergency service arrival time are considered. In order to estimate the uncertainties of input parameters Monte Carlo simulation are used, and fatalities for each assumed accident scenarios are obtained as results. For the efficiency of iterative calculation PRA(Probabilistic Risk Analysis) code is developed in this study. As a result fire detection have large effect.

  • PDF

Flexural performance of fire damaged and rehabilitated two span reinforced concrete slabs and beams

  • Yu, Jiang-Tao;Liu, Yuan;Lu, Zhou-Dao;Xiang, Kai
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.799-813
    • /
    • 2012
  • Five two-span reinforced concrete (RC) slabs and seven two-span RC beams were tested under the ISO 834 standard fire with different durations. CFRP strengthening was then applied to some of the specimens after the damaged concrete was removed from the specimens and replaced with polymer mortar. All the specimens were loaded to failure to investigate the influence of fire-damage and the effectiveness of strengthening methods. Test results indicated that the flexural capacities of specimens decrease with the fire duration increases. Moreover, fire exposure had more significant effect on the flexural rigidity than on the bearing capacity of the specimens. After rehabilitation, the bearing capacities of specimens reached or even exceeded that of the reference RC specimen, and the strengthening methods seemed to have limited effect on flexural rigidity recovery. From the analysis of moment redistribution of tested beams, elevated temperature is found having different impacts on sagging moment region and hogging moment region. The damage of RC continuous member is definitely a comprehensive response of different regions.

A Numerical Study on the Smoke Control in Center-Platform Type Subway Station Fires (섬식 지하철역사내 화재시 연기제어에 관한 수치해석적 연구)

  • Lee, Sung-Ryong;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.313-318
    • /
    • 2007
  • In this study, numerical simulations were carried out to analyze the effect of the smoke extraction system and fire shutters in subway station fires using FDS 4.0. Subway station used in the experiment was 145 m long. Simulation results are validated by comparing with experimental results. Simulation results showed good agreement with experimental results within $10^{\circ}C$. 10 MW polystyrene was used as a fuel in the numerical prediction. Numerical predictions were performed in the center-platform type subway station in case of a kiosk fire. Temperature and CO concentration were lowered by the operation of smoke extraction system. But, the operation of fire shutters had little effect on temperature and CO concentration in the platform level.

Effects of Particle Size of Dry Water on Fire Extinguishing Performance (드라이워터의 입자크기가 소화성능에 미치는 영향)

  • Lee, Eungwoo;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.28-35
    • /
    • 2019
  • Dry water is a core-shell structured powder which comprises a very fine water core covered with hydrophobic silica particles. Recently, the dry water has attracted attention as a new type of fire extinguishing agents. However, characteristics of the dry water as a fire extinguishing agent have not been revealed until now. To our best knowledge, this is the first work to uncover effects of particle size of the dry water on the fire extinguishing performance. Pristine dry water, which has heterogeneous particle size distribution, was carefully separated by sieving method into three fractions which were a small size (ca. $110{\mu}m$) fraction, a medium size (ca. $220{\mu}m$) fraction and a large size (ca. $400{\mu}m$) fraction. Microscopic observations confirmed the effective separation of dry water's particle size. In extinguishing tests of wood cribs fire, the medium size dry water showed most excellent fire extinguishing performance, as compared to other dry waters having small (ca. $110{\mu}m$) and large (ca. $400{\mu}m$) particle size. The good performance of the medium size (ca. $220{\mu}m$) dry water may be attributed to the balance between cooling effect of the water core and smothering effect of the silica particles. It is also revealed that small size dry water has poor flowability than large size dry water.

Structural Behavior of Fire-Damaged Reinforced Columns with $P-\Delta$ Effect ($P-{\Delta}$ 영향을 화해를 입은 기둥의 거동)

  • Lee, CHa-Don;Lee, Hang-Eun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.514-519
    • /
    • 2004
  • The paper discusses the general behavior of fire-damaged slender reinforced concrete columns on the basis of results obtained from parametric studies. Effects of slenderness ratio, concrete strength, cover thickness, reinforcement ratios, exposed time to fire, and eccentricity on the ultimate capacity of fire-damaged column are theoretically observed. With the increase of slenderness ratio, similar tendency of relative strength reduction was observed between fire-damaged columns and columns at room temperature.

  • PDF

The Leakage Crack Calculation of the Fire Door and the Stack Effect Analysis (방화문의 누설틈새 계산 및 연돌효과 분석)

  • Kim, Il-Young;Kwon, Chang-Hee
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.46-53
    • /
    • 2013
  • The architecture environment has changed. The corresponding design criteria should be changed. From July 27th, 2005 the Korea Standard of the fire door changed concerning the smoke resistance test which made the door gap structure more elaborate. However the National Fire Safety Codes are applied by the old data's of England. Which in case differs in the actual construction to the blue print, making the safety standard too excessive. Analyze the results and the phenomenon that occurs due to the difference between design and reality. The National Fire Safety Codes should be revised to leakage crack calculation is presented. Difference of the air flow for the smoke protection due to the stack effect analyzed. Living patterns and evacuation patterns of the apartment reflect and reasonable air flow measurement method are presented.

Combustion Characteristics of Pool and Whirl Fire on Methanol by Height of Fire Source using the Small Scale (화점높이 변화에 따른 메탄올의 소규모 Pool 및 Whirl Fire의 연소특성)

  • Park, Hyung-Ju
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.73-78
    • /
    • 2012
  • This study is intended to understand flame behavior of pool and whirl fire by height of fire source. Liquid fuel was methanol which is used in many studies for pool and whirl fire. Size of vessel was $100{\times}100{\times}50$ and the vessel was made by stainless steel. Combustion time, mass loss rate, flame temperature, flame height and air entrainment rate from the outside to flame were measured, and flame behavior was visualized with video camera. Based on the experiment, it was found that combustion characteristics by height of fire source got a more effect on whirl fire than pool fire.

Halon 규제에 대한 대응 방안

  • Kim, Yeong-Bae
    • Fire Protection Technology
    • /
    • s.10
    • /
    • pp.13-18
    • /
    • 1991
  • It seems that the use of one of the major fire-fighting agents-halon-is going to be denied to the fire protection community at the end of the century. It is now being widely accepted that the CFC and halons released into the atomosphere are contributing to both the depletion of the ozone layer green house effect. Therefore, we should research to determine suitable alternative(gaseous) fire extinguishings agents to the halons and improve or develop other extinguishing systems.

  • PDF