• Title/Summary/Keyword: EFDC+

Search Result 180, Processing Time 0.03 seconds

Hypoxia Estimation of Coastal Bay through Estimation of Stratification Degree (성층강도 산정을 통한 내만의 Hypoxia 산정)

  • Jung, Woo-Sung;Lee, Won-Chan;Hong, Sok-Jin;Kim, Jin-Lee;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.511-525
    • /
    • 2014
  • Goal of this study is estimating of validity of calculated vertical diffusion coefficient for Masan bay is semi-enclosed bay by using eco-hydrodynamic model that is used to analysis of physical structure of coastal waters and calculates the vertical diffusion coefficient. physical structure of coastal waters is calculated by EFDC model, vertical diffusion coefficient calculated as the density gradient is bigger, the vertical diffusion coefficient as density gradient is increases, the vertical diffusion coefficient is decreased. Validity of vertical diffusion coefficient estimated by reproducibility of concentration of dissolved oxygen that calculated in ecosystem model is constructed by Stella program. The Results of model in 2008~2009 were $R^2$ value of 2008 is 0.529~0.700 and $R^2$ value is 0.542~0.791. This results were similar to observed data and simulated to hypoxia at that time. The 'vertical diffusion coefficient' represents stratification and physical stable of a water body, and will be useful for prediction of Hypoxia outbreak.

A Investigation and Analysis of Water Temperature by Juam Regulation Dam Outflow in Downstream and Suncheon Bay (주암조절지댐 방류수에 따른 하천 및 순천만 일대 수온변화 조사분석)

  • Lee, Hyeon No;Jung, Kwan Sue;Cheon, Geun Ho;Hur, Young Teck
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.501-509
    • /
    • 2015
  • Lately multipurpose dam is required to consider various interests such as quality, ecological environment as well as flood control, water supply, hydropower generation, etc. The objective of this study is to investigation and analysis of water temperature in the areas where there are social conflicts due to cold water outflow. In this study, we monitored water temperature of Juam regulation dam, downstream river, Suncheon bay in a long term period and performed comparative analysis on a change of water temperature in downstream river and Suncheon bay by using three-dimensional numerical mode (EFDC) considering various external factors such as water outflow amount. The result of monitoring and numerical modelling indicates that effects of cold water outflow takes place from april to september. Also effects of the low temperature discharge of dam was complicatedly altered by various factors such as outflow time and amount, weather and tide level conditions etc. The result of this study can be utilized as a basic data for establishing improvement of dam operation plan to minimize negative effects of dam's cold temperature water outflow to downstream river and coastal area.

Simulations of the Effect of Flow Control and Phosphate Loading on the Reduction of Algae Biomass in Gangjeong-Goryong Weir (유량 조절과 인 부하 변동에 따른 강정고령보 조류저감 효과 수치 모의)

  • Park, Dae-Yeon;Kim, Sung-Jin;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.507-524
    • /
    • 2019
  • The purpose of this study was to validate the EFDC model for the weir pool of Gangjeong-Goryong Weir located in Nakdong River, and evaluate the effect of flow control and phosphate loading reduction on the water quality and algae biomass by group (Diatom, Green, Cyanobacteria). As a result of model validation using 2018 experimental data,the time series of water level and vertical distribution of water temperature, DO, organic matter, nitrogen, and phosphorus time series were properly simulated. Seasonal fluctuations of algae biomass by group were adequately reproduced, but the deviations between measured and simulated values were significant in some periods. As a result of scenario simulations to control the water level and flow rate, the thermal stratification was resolved as the water level was lowered and the flow rate increased. The flow velocity at which the water temperature stratification was resolved was about 0.1 m/s, which is consistent with the previous study results of Baekje Weir in Geum River. Simulations of the 2Q flow scenario showed that Chl-a decreased by 8.7% and the cell density of diatom and green algae declined. The cell density of cyanobacteria increased, however, because the high concentrations of cyanobacteria in the upstream boundary conditions directly affected downstream due to increased flow velocity. In the scenario simulation of reducing the influent phosphate load concentration (average 0.056 mg/L) to 50%, Chl-a decreased by 13.6%.The results suggest that the upstream algae concentration and phosphorus load reduction should be considered simultaneously with hydraulic control to prevent algal overgrowth of Gangjeong-Goryong Weir.

Impact Analysis of Tributaries and Simulation of Water Pollution Accident Scenarios in the Water Source Section of Han River Using 3-D Hydrodynamic Model (3차원 수리모델을 이용한 한강 상수원구간 지류영향 분석 및 수질오염사고 시나리오 모의)

  • Kim, Eunjung;Park, Changmin;Na, Mijeong;Park, Hyeon;Kim, Bogsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.363-374
    • /
    • 2018
  • The Han River serves as an important water resource for the city of Seoul, Korea and in the neighboring metropolitan areas. From the Paldang dam to the Jamsil submerged weir, the 4 water intake stations that are located for the Seoul metropolitan population were under review in this study. Therefore the water quality management in this section is very important to monitor, analyze and review to rule out any safety concerns. In this study, a 3-D hydrodynamic model, EFDC (Environmental Fluid Dynamics Code), was applied to the downstream of the Paldang Dam in the Han River, which is about 23 km in length, to determine issues related to water resource management. The 3-D grid was composed of 2,168 horizontal grids and three vertical layers. In this case, the hydrodynamic model was calibrated and verified with an observed average daily water surface elevation, water temperature and flow rate data for 3 years (2013~2015). The developed EFDC model proved to reproduce the hydrodynamics of the Han River well. The composition ratios of the noted incoming flows at the monitored intake stations for 3 years and their flow patterns in the river were analyzed using the validated model. It was found that the flow of the Wangsuk Stream depended on the Paldnag dam discharge, and it was noted that the composition ratios of the stream at the intake stations changed accordingly. In a word, the Wangsuk Stream moved mainly along the right bank of the Han River under the condition of a normal dam flow. As can be seen, when the dam discharge rate was low, the incidence of lateral mixing was often seen. The scenario analyses were also conducted to predict the transport of conservative pollutants as in the case of a chemical spill accident. Generally speaking, when scenarios were applied, the arrival time and concentration of pollutants at each intake station was thus predicted.

Preliminary Uncertainty Analysis to Build a Data-Driven Prediction Model for Water Quality in Paldang Dam (팔당댐 유역의 데이터 기반 수질 예측 모형 구성을 위한 사전 불확실성 분석)

  • Lee, Eun Jeong;Keum, Ho Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.24-35
    • /
    • 2022
  • For water quality management, it is necessary to continuously improve the forecasting by analyzing the past water quality, and a Data-driven model is emerging as an alternative. Because the Data-driven model is built based on a wide range of data, it is essential to apply the correlation analysis method for the combination of input variables to obtain more reliable results. In this study, the Gamma Test was applied as a preceding step to build a faster and more accurate data-driven water quality prediction model. First, a physical-based model (HSPF, EFDC) was operated to produce daily water quality reflecting the complexity of the watershed according to various hydrological conditions for Paldang Dam. The Gamma Test was performed on the water quality at the water quality prediction site (Paldangdam2) and major rivers flowing into the Paldang Dam, and the method of selecting the optimal input data combination was presented through the analysis results (Gamma, Gradient, Standar Error, V-Ratio). As a result of the study, the selection criteria for a more efficient combination of input data that can save time by omitting trial and error when building a data-driven model are presented.

Identification of the Relationship between Water Quantity and Water Quality (Salinity) in the Seomjin River Estuary (섬진강하구 수치 모델링을 이용한 수량·수질(염분) 관계 규명)

  • Jung, Chung Gil;Kwon, Min Seong;Park, Sung Sik;Bang, Jae Won;Choi, Kyu Hyun;Kim, Kyu Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.478-478
    • /
    • 2022
  • 섬진강은 하굿둑이 없는 열린 하구로서 하구로부터 약 21km까지 조석의 영향을 받아 강물의 염도가 시간에 따라 변하는 환경이다. 오랫동안 섬진강 하구는 다양한 원인으로부터 바다화로 대표되는 염하구 문제가 지역 현안 사항으로 제기되어 왔다. 상류에서의 용수사용 증가로 인한 하천 유하량 감소 또한 그 원인들 중 하나로 판단됨에 따라 실제 하구까지 내려오는 하천유량과 바다로부터 유입되는 해수를 구분하여 정량화하는 연구가 필요한 사안이다. 본 연구의 목적은 섬진강 수계 하구에서의 다양한 생태환경을 보전하기 위한 적정 염분유지가 요구됨에 따라 섬진강하구 염분계측기(섬진강대교)를 설치하여 염분농도를 관측하고 하천유량, 하천취수 및 해양조위에 따른 염분농도 변화를 모의하여 하천유량과 염분과의 관계를 제시하고자 하였다. 본 연구에서는 EFDC(Environmental Fluid Dynamics Code) 수치모델을 이용하여 상류로는 구례군(송정리) 수위관측소부터 하류로는 여수해만 및 문의리까지의 구역을 설정하고 광양조위, 하동수위 및 고정식 염분 계측기 관측염분농도 자료를 이용하여 수치모델링의 재현성을 검증하였다. 검증 결과, 결정계수(R2)는 0.87(하동수위), 0.93(광양조위), 0.56(섬진강대교 염도)를 나타냈다. 모델 검보정 후 하천유량에 따른 염분변화 실험을 실시하여 염분농도 거동을 분석하였다. 모델 결과, 섬진강하구에서의 염분거동은 소조기때 염분체류 현상으로 인해 대조기 거동과는 큰 차이를 나타냈다. 따라서, 모델링 결과를 이용한 유량-염분 조견표는 각각 대조기와 소조기로 구분하여 산정하였다. 대조기때는 송정유량이 10톤/초의 평균갈수량이 흐를 경우 다압에서의 취수량이 2.52톤/초 ~ 4.63/초로 증가할수록 18.8psu ~ 19.9psu로 증가하였다. 소조기의 경우는 25.5psu ~ 25.7psu로 대조기와 비교하여 크게 증가됨을 나타냈다. 본 연구의 결과는 객관적인 생태환경 보전을 위한 적정염분농도 범위가 도출된다면 이를 유지하기 위한 필요유량과 필요유량을 확보하기 위한 장단기적인 대책수립이 가능할 것으로 기대된다.

  • PDF

Study on the Temporal and Spatial Variations of Salinity by Freshwater Discharge in Gyeonggi Bay (경기만내 담수 유입으로 인한 시·공간적인 염분변화에 대한 연구)

  • Jeong, Jeong Ho;Kim, Kuk Jin;Yang, Keun Ho;Chang, Yoon Young;Park, Sun Hwan;Kim, Young Taeg
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.6
    • /
    • pp.421-432
    • /
    • 2007
  • To investigate temporal and spatial variations of hydrodynamics and environmental conditions in Gyeonggi Bay, including Han River estuary, numerical experiments were performed using 3-dimensional fine grid numerical ocean model. The model successfully reproduced the physical phenomena already known in Gyeonggi Bay where tide and fresh water discharge are dominant forcings. The calculated harmonic constants of tide and tidal current agreed well with those of observations at nine tide stations and two tidal current stations. Tidal asymmetries along the Yeomha Waterway, mainly caused by non-linear effect, were well reproduced and agreed well with observations. Time series of salinity at four stations(A, B, C and D) and horizontal distributions of monthly averaged salinity show that Gyodong and Seokmo Waterways play an important role in fresh water discharge into the Gyeonggi Bay rather than Yeomha Waterway.

Numerical simulation for dispersion of anthropogenic material near shellfish growing area in Geoje Bay (거제만 패류양식 해역에서의 육상기인 물질 확산에 관한 수치실험)

  • KIM, Jin-Ho;LEE, Won-Chan;HONG, Sok-Jin;KIM, Dong-Myung;CHANG, Yong-Hyun;JUNG, Woo-Sung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.3
    • /
    • pp.831-840
    • /
    • 2016
  • Hydrodynamic condition can be used to predict particle movement within water column and the results used to optimize environmental conditions for effective site selection, setting of environmental quality standard, waste dispersion, and pathogen transfer. To predict the extent of movement of particle from land, 3D hydrodynamic model that includes particle tracking module was applied to Geoje Bay and to calibrate particle tracking model, floating buoy measurement is operated. The model results show that short time is required for particles released into system from river to be transported to the shellfish farming area. It takes about 2 days for the particles to shellfish farming area under mean flow condition. It meant Geoje Bay, especially shellfish farming area is vulnerable to anthropogenic waste from river.

3차원 연안 해수유동 및 부영양화 모델

  • Choe, Yang-Ho;No, Yeong-Jae;Jeong, Chang-Su;Kim, Suk-Yang
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.11a
    • /
    • pp.255-260
    • /
    • 2006
  • 천수만의 수리 역학 및 수질 모델을 위하여 3차원 수리역학 모델(EFDC)과 21개 수질 변수에 대한 수질 모델이 접합된 3차원 수리역학-부영양화 모델(HEM-3D)을 이용하였다. 관측 자료에 대한 모델 검증 결과, 조위는 관측치에 비해 5% 정도, 유속은 10% 정도 작은 값을 보였으며, 지각은 모델 결과치가 고정항에서 늦고 간월도에서 빠르게 나타났다. 수질 항목, 특히 용존산소의 관측치에 나타난 전반적인 분포 양상을 잘 재현하고 있었으며, 항목별 기여도 분석에서는 수질 모델이 퇴적물에 의한 산소 소비에 민감하게 반응하고 있으며, 용존산소 변화에 있어서 퇴적물에 의한 영향이 중요한 역할을 하고 있음을 보여주었다. 본 모델 결과는 기존의 모델들과 비교하여 천수만 해역의 해수 유동 특성을 잘 재현하고 있으며, 본 모델과 연계된 수질 모델의 오염물 확산과 수질 항목들의 거동을 이해할 수 있는 정보를 제공하였다. 그럼에도 불구하고 본 연구를 통하여 나타난 문제점은, 수질 예측 모델에 필요한 수질 변수들의 관측 자료와 양식장에 의한 오염 부하량 자료가 충분하지 못하며, 퇴적물에 의한 수질 변화를 정량화할 수 있는 모델의 개발이 시급하다는 것이다. 특히 퇴적물에 의한 산소 요구량은 유기퇴적물이 미생물 등에 의해 분해되는 과정에서 요구되는 산소량으로서, 해수 유동 조건의 변화와 오염부하에 의한 유기퇴적물의 집적이 주된 요인이다. 방조제 건설 이후 해수유동 조건의 변화와 더불어 지속적으로 오염물이 유입되고, 담수 및 천수만의 수질이 점점 악화되고 있다. 따라서 이러한 오염부하와 퇴적물에 대한 관리대책이 시급한 것으로 판단되며, 향후 정확한 수질 예측을 위해서는 본 연구에서 나타난 문제점들에 대한 재고가 필요할 것으로 사료된다.

  • PDF

Assessment of Documentation Status of the Statement on the Sea Area Utilization according to Artificial Structure Installation in Public Water (공유수면 인공구조물 설치에 따른 해역이용협의서 작성실태 평가)

  • Eom, Ki-Hyuk;Lee, Dae-In;Kim, Gui-Young;Yoon, Sung-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.3
    • /
    • pp.265-276
    • /
    • 2013
  • This study assessed documentation status of each environmental assessment items by analyzing the 243 case of marine EIS on the Consultation System of Sea Area Utilization. Observed rate of tidal elevation, current, temperature, salinity in maine environment were below 20%. The EFDC tool is applied substantially in hydrodynamic modeling. The verification process, however, is very insufficient using the recent observed data. Also, in-situ assessment rate of pelagic organism such as phytoplankton was below 50%, and assessment for Chlorophyll a was not accomplished. Ecological index evaluation for zooplankton and benthic ecosystem were not considered in statements. Especially, the rational assessment on the fisheries resources and protected species were very limited. It was necessary that the core assessment items (checklists) were established for environmental scoping. Furthermore, suggestion of information related to development, regional coastal management plan, aquaculture farms, and facilities were enhanced. The redundancy problem of proceedings between Environmental Impact Assessment and Sea Area Utilization Assessment System was improved.